
A
qu
aQ

AquaQ Training

HTML5 WebSockets and kdb+

email:

support@aquaq.co.uk

web:

www.aquaq.co.uk

AquaQ Analytics

mailto:support@aquaq.co.uk
www.aquaq.co.uk

A
qu
aQ

Revision History

Revision Date Author(s) Description

0.1 February 25, 2014 Glen Smith First version created

Copyright ©2013�2014 AquaQ Analytics Limited
All Rights Reserved.

1

A
qu
aQ

Contents

1 Company Overview 3

2 What are HTML5 and WebSockets? 4

2.1 Brief overview . 4
2.2 What are WebSockets? . 5
2.3 WebSocket protocol . 5
2.4 When to use WebSockets . 5

3 HTML 6

3.1 Tags . 6
3.2 CSS . 6
3.3 Integrating JavaScript . 7
3.4 HTML5 Template . 7
3.5 Directory structure . 8

4 JavaScript 9

4.1 Data Types . 9
4.2 Arrays . 10
4.3 Objects . 10
4.4 Functions . 10
4.5 Manipulating HTML content . 10

5 jQuery 11

5.1 Install . 11
5.2 Manipulating HTML content . 11
5.3 Event Handlers . 11
5.4 E�ects . 12
5.5 Traversing the DOM . 12

6 Using WebSockets 13

6.1 Getting started . 13
6.2 How to use WebSockets . 14
6.3 Data Types . 16
6.4 Formatting data in kdb+ . 16

2

A
qu
aQ

CONTENTS HTML5 WebSockets and kdb+

6.5 Serialization . 17
6.6 Display tables . 18
6.7 Data Handling . 18
6.8 Interpreting client data . 19
6.9 Sending data when it's updated . 19

7 Examples 21

7.1 index.html �le . 21
7.1.1 HTML �le . 21
7.1.2 CSS - main.css . 21
7.1.3 JavaScript - main.js . 21

7.2 Retrieve atom . 22
7.2.1 HTML �le . 22
7.2.2 JavaScript - example1.js . 22

7.3 CSV table and format to HTML . 23
7.3.1 HTML �le . 23
7.3.2 JavaScript �le - example2.js . 23

7.4 JSON table and format to HTML . 24
7.4.1 HTML �le . 24
7.4.2 JavaScript �le - example3.js . 24

7.5 JSON table function for formatting keyed and unkeyed tables 25

8 Exercises 27

8.1 HTML and JavaScript . 27
8.2 kdb+ and JavaScript . 27

9 Answers 28

9.1 HTML and JavaScript . 28
9.2 kdb+ and JavaScript . 28

3 ©AquaQ Analytics Limited 2014

A
qu
aQ

Chapter 1

Company Overview

AquaQ Analytics Limited is a provider of specialist data management, data analytics
and data mining services. We also provide strategic advice, training and consulting
services in the area of market-data collection to clients within the capital markets
sector. Our domain knowledge, combined with advanced analytical techniques and
expertise in best-of-breed technologies, helps our clients get the most out of their data.

The company is currently focussed on four key areas, all of which are conducted
either on client site or near-shore:

� Kdb+ Consulting Services: Development, Training and Support;

� Real Time GUI Development Services;

� SAS Analytics Services;

� Providing IT consultants to investment banks with Java, .NET and Oracle expe-
rience.

The company currently has a headcount of 30 consisting of both full time employees
and contractors and is actively hiring additional resources. Some of these resources are
based full-time on client site while others are involved in remote/near-shore develop-
ment and support work from our Belfast headquarters. To date we have MSAs in place
with 6 major institutions across the UK and the US.

4

A
qu
aQ

Chapter 2

What are HTML5 and

WebSockets?

2.1 Brief overview

By the end of this training document you should be able to fully utilize WebSockets
and kdb+ together. You should also be familiar with using the web console in Chrome,
setting up kdb+ to work with WebSockets, and writing basic JavaScript and HTML5.
This will be an introduction to very basic web development, so let us explore some
commonly used terminology before continuing.

HTML5 - Hypertext Markup Language is a markup language used to build web pages.
HTML5 is the latest version of HTML and comes with many new features, one of which
is WebSockets.

WebSockets - WebSockets allows web applications to maintain bidirectional com-
munications with server side processes over one TCP socket. In this case we can create
a WebSocket connection between the client (browser) and a server (kdb+ process).

JavaScript - This is a scripting language that is used by all modern browsers to
add interactivity to web pages. It is the language we will use to work with WebSockets.

HTTP - Hypertext Transfer Protocol is the protocol that enables a web browser to
communicate with a server with the aim of displaying web documents.

DOM - Document Object Model allows programs and scripts to dynamically access
and update the content, structure and style of documents. Before this was introduced
HTML documents were not changeable inside the browser.

5

A
qu
aQ

2. What are HTML5 and WebSockets? HTML5 WebSockets and kdb+

2.2 What are WebSockets?

WebSockets allows web applications to maintain bidirectional communications with
server side processes over one TCP socket1. The old method of creating a connection
and retrieving data between a client and server is called AJAX. The AJAX method
consisted of continually polling a connection to receive new data, opening a new con-
nection, downloading data and then closing the connection. With WebSockets, once
the connection between the client and server is established it persists and data is sent
down to the client whenever new data is created. This method is far more e�cient
as the client is not required to ask if the server has new data as the server will send
the new data when it is updated. HTTP wasn't designed for real-time, full-duplex
communication so as WebSockets operates over TCP there could be a 500:1 reduction
in unnecessary HTTP header tra�c and 3:1 reduction in latency. You can now see why
this is so exciting for building new web applications.

2.3 WebSocket protocol

The protocol has two parts: the handshake and data transfer. In order to establish
a WebSocket connection the client and server must upgrade from the HTTP protocol
to the WebSocket protocol. This is done during their initial handshake via a HTTP
request shown below. Once the handshake is completed, data transfer is started and
this occurs on a two way communication channel where both parties can send data
independently of each other over TCP2 .

GET /text HTTP/1.1
Upgrade: WebSocket
Connection: Upgrade
Host: some.host.com:port
Origin: http://some.client.com/app

HTTP/1.1 101 WebSocket Protocol Handshake
Upgrade: WebSocket
Connection: Upgrade
WebSocket-Origin: http://some.client.com/app
WebSocket-Location: ws://some.host.com:port

2.4 When to use WebSockets

� Whenever you need real time updates in your web application

� You need a cross platform front end for a kdb+ server that can be accessed
through the internet

� You want to keep network resource usage low whilst providing the best function-
ality

1W3 WebSockets speci�cation: http://www.w3.org/TR/websockets
2The WebSocket Protocol: http://datatracker.ietf.org/doc/rfc6455/?include_

text=1

6 ©AquaQ Analytics Limited 2014

http://www.w3.org/TR/websockets
http://datatracker.ietf.org/doc/rfc6455/?include_text=1
http://datatracker.ietf.org/doc/rfc6455/?include_text=1

A
qu
aQ

Chapter 3

HTML

HTML is a markup language used to create web pages. It uses tags to describe the
structure of a document and its content. This will be a brief overview as more insightful
tutorials can be found online.

3.1 Tags

Tags are keywords that determine how their content will be interpreted by the browser.
An example of a tag is <div>, it also has a corresponding closing tag </div>. For
structure <div> tags are used, where the content inside it will belong to that <div>.
There are tags that are used for type and an example of one is the headings tag <h1>.
HTML5 is pushing towards using semantic tags such as <header>, <article> and
<time> which describe its meaning to the web browser and developer. Tags also have
attributes such as class and id which are used in both JavaScript and CSS. An element
is a tag and its content.

<div class="container">
<h1 id="header">Basic HTML5 Template</h1>

</div>

3.2 CSS

Cascading Style Sheets (CSS) is a style sheet language used for describing the look and
formatting of a document written in a markup language. CSS allows for properties of
an HTML tag to be changed, such as height, width, background colour and font size.
You can assign styles to elements by using its tag name or you can include a class or id
attribute. The class attribute allows for styles to be applied to many elements whereas
the id attribute only allows styles to apply to one element. There are three ways to
include CSS in a HTML document: using inline style, putting code inside <style>
tags and lastly include the code by linking to a CSS �le.

<h1 style="font-size:100px:">Basic HTML5 Template</h1>
<style> h1{font-size:100px;} </style>

7

A
qu
aQ

3. HTML HTML5 WebSockets and kdb+

<link rel="stylesheet" href="css/main.css" type="text/css" />

3.3 Integrating JavaScript

To get JavaScript to work in a HTML document there are three options: using inline
JavaScript, putting the JavaScript code inside the <script> tags and lastly include
the code by linking to a JavaScript �le. There is more information on JavaScript in
Chapter 4.

<button onclick="window.alert('HELLO');">Click me</button>
<script>window.alert("HELLO");</script>
<script src="http://kx.com/q/c/c.js"></script>

3.4 HTML5 Template

This is a basic HTML5 template that shows how all the tags are used in one document.

<!doctype html>
<html lang="en"><head><meta charset="utf-8">
<title>Basic HTML5 Template</title>
<!--[if lt IE 9]>
<script src="http://html5shiv.googlecode.com/svn/trunk/html5.js">
</script><![endif]-->
<style>
.container { margin:0 auto; width:500px;} /* . denotes class */
#header { font-family:Georgia; } /* # denotes id */
h1{font-size:100px;}
</style>
</head>
<body>
<div class="container">
<h1 id="header">Basic HTML5 Template</h1>

</div>
<script src="http://code.jquery.com/jquery-latest.min.js" type="text/javascript"></

script>
<script src="http://kx.com/q/c/c.js"></script> <!-- Include Kx's c.js file -->
<script>
// Enter JavaScript here
</script>
</body></html>

8 ©AquaQ Analytics Limited 2014

A
qu
aQ

3. HTML HTML5 WebSockets and kdb+

3.5 Directory structure

As there are di�erent components required to build a web page it is good practice to
work around a logical directory structure. The �les below are just used as an example
and not all of them are required to build a web page.
html

css
bootstrap-min.css
bootstrap-theme.min.css
main.css

img
...

js
vendor

bootstrap.min.js
c.js
d3.v3.min.js
jquery-1.11.0.min.js
modernizr-2.6.2-respond-1.1.0.min.js

monitor.js
index.html

The root directory html contains the index.html and all the directories. The css
directory holds the CSS style sheets that determine the layout of the page. The img
directory holds any images that you will use on your web page. The js directory holds
the local JavaScript �les and the sub directory vendor holds JavaScript libraries.
These JavaScript �les are stored locally but you could directly link to them in another
location such as on a CDN but storing them locally cuts out the dependency on the
uptime of other services.

9 ©AquaQ Analytics Limited 2014

A
qu
aQ

Chapter 4

JavaScript

JavaScript is a scripting language that is used in all modern browsers in order to add
interactivity to web pages. In recent years there has been a lot of framework develop-
ments using JavaScript. Popular developments include jQuery which is a framework
that makes it easier to work with JavaScript and Node.js which is platform to cre-
ate real time applications based on JavaScript. This will be a brief introduction to
JavaScript.

4.1 Data Types

Data types in JavaScript are dynamic, meaning that one variable could be used as a
string on one line and then a number on the next. You do not have to declare a type
to it. There are only a few data types and these are String, Number, Boolean, Array,
Object, Null and Unde�ned. There is one surprising and equally confusing feature in
JavaScript, everything except null and unde�ned is an object. To create them you must
instantiate the data type's object. To see what data type a variable is use typeof
variable. For a table showing kdb+ data types and their corresponding JavaScript
data type see table 6.2.

var example = "Hello World"; // String
example = 'Hello World'; // String with single quotes
example = new String("Hello World"); // String created by instantiating String

object
example = 123.0945; // Number
example = true; // Boolean
example = [99,"problems"] // Array using literal notion
example = new Array(99,"problems"); // Array created by instantiating Array Object
example = {name:"Glen",iq:423}; // Object
example = new Object(); // Empty object created by instantiating Object
example.name = "Glen"; // Adding properties to object
example.iq = 423;
example = null; // Null
example = undefined; // Undefined

10

A
qu
aQ

4. JavaScript HTML5 WebSockets and kdb+

4.2 Arrays

Arrays are analogous to lists and they operate in a similar way. You can have elements
with mixed data types as shown below. To access an element you must use its index
number. Arrays also come with methods and properties.

var example = ["that",69,true, {how:"now",brown:"cow"},null,undefined]; // Array
example[0] = "that"; // Accessing element with index 0
example.length; // Returns 6. Length property analogous to count function
example.indexOf(69); // Returns 1. IndexOf method analogous to find (?)

4.3 Objects

As mentioned almost everything in JavaScript is an object. They have properties and
methods (functions) which are accessed using . notation.

Var car = {}; // Using literal notion
car.brand = "Reliant Robin"; // Property
car.wheels = 3;
car.print = function (){ console.log("My car is a " + this.brand + " and it has " +

this.wheels + " wheels!")}; // Method - Notice how properties are accessed using
this

car.brand; // Returns "Reliant Robin";
car.print(); // Returns "My car is a Reliant Robin and it has 3 wheels!"

4.4 Functions

A function is a block of code that is executed once it is called. It is good practice to
split code into functions that do one thing, this way any errors or unexpected results
can be found or changed easily.

function hello(name){
console.log("Hello " + name + "!");

}
hello("Glen"); // Returns "Hello Glen!"

4.5 Manipulating HTML content

JavaScript can interact with HTML and change the content of elements, add new
elements or delete them.

var header = document.getElementById("header"); // Select element
header.innerHTML = "My content has been changed"; // Change content
header.parentNode.removeChild(header); // Delete it

11 ©AquaQ Analytics Limited 2014

A
qu
aQ

Chapter 5

jQuery

jQuery is a fast, small, and feature-rich JavaScript library. It makes things like HTML
document traversal and manipulation, event handling, animation, and Ajax much sim-
pler with an easy-to-use API that works across a multitude of browsers. It is the default
library used by almost all web developers and is used by 80% of the top 10,000 websites.

5.1 Install

To add the jQuery library in your web document, include the link below just before
the </body> tag. To check if it is installed you can enter jQuery into the console
and it should return a result. The code included here will link you to the latest jQuery
library, this may not be the best choice in the case that you may have some deprecated
jQuery functions included in your code.

<script src="http://code.jquery.com/jquery-latest.min.js" type="text/javascript"></
script>

5.2 Manipulating HTML content

jQuery makes it much easier to select HTML elements. It accepts a selector based o�
CSS rules and some of jQuery's own custom selectors too.

var a = document.querySelectorAll('.post__content h2');// HTML method
a[a.length-1].innerHTML = "CCCChanges";
$('.post__content h2:last-child').html("CCCCChanges");// jQuery method

5.3 Event Handlers

If you would like to add some JavaScript that will run after the user clicks on something
or hovers over an element you can use event handlers. They are quite powerful as they
allow the developer full control over user interaction.

12

A
qu
aQ

5. jQuery HTML5 WebSockets and kdb+

// Makes every link displaying an alert message and prevents user from going to that
url

$('a').click(function(e){
alert("No Escape!");
e.preventDefault();

});
// Once you submit a form you will get an alert.
$('form').submit(function(){
alert("You have submitted the form");

});

5.4 E�ects

When creating a web page you want to have full control over what the user sees and
how they interact with it. Sometimes HTML and CSS are not enough and you need
something more. Sometimes e�ects are needed and in this case they can be very useful.
Take for example the show/hide e�ect, this could be used for multiple things such as
to display messages and then dismiss them. The e�ect included below is the animate
e�ect, it allows you to set �nal CSS rules that the element will be animated to from its
original properties. This idea could go further and include more advanced techniques
such as draggable/droppable elements, autocomplete input forms, slider for changing
values etc. With these packages it is easy to see why more desktop applications are
being carried over to work in the browser. In the example below there is an event
handler "click" attached to the element with a "header" id that will hide this element
once it is clicked.

$("#header").click(function(){
$(this).css({"position":"relative"}).animate({left:'250px'});

});

5.5 Traversing the DOM

In jQuery, traversing means to move through the DOM and �nd elements based on
their relation to other elements. For example, if a click handler function has been
applied to a button element and when it is clicked it will hide its parent div element.
For more detailed information about traversing visit http://www.w3schools.com/
jquery/jquery_traversing.asp.

$("button").click(function(){
$(this).parent().hide();

});

13 ©AquaQ Analytics Limited 2014

http://www.w3schools.com/jquery/jquery_traversing.asp
http://www.w3schools.com/jquery/jquery_traversing.asp

A
qu
aQ

Chapter 6

Using WebSockets

6.1 Getting started

In order to proceed you need the following:

1. Set up a port in your q console using \p 4321

2. Web browser - Google Chrome

To become familiar with using the developer console that comes with Chrome, press
F12 or go to Tools > JavaScript console. See �gure 6.1 for a screenshot. This JavaScript
console is similar to your q console, you can run commands and expect a return. Try
the basic stu� such as 1+1, var date = new Date() or typeof date.

Figure 6.1: Screenshot of Chrome and its developer console

14

A
qu
aQ

6. Using WebSockets HTML5 WebSockets and kdb+

6.2 How to use WebSockets

To create a WebSocket connection, just create a new WebSocket instance including
the URL to the server as an argument. It parses the URL argument string to obtain
host, port, resource name and whether it is over a secure connection (wss:// instead of
ws://). The port is optional as the default port used for ws is 80 and wss is 433. The
following code snippet should be entered into the developer console.

var websocket = new WebSocket("ws://homer.aquaq.co.uk:4321")

In JavaScript . is used to access attributes (properties) and methods (functions) of
an object. One of the attributes of a WebSocket is called readyState. The readyState
attribute represents the state of the connection and these are shown by 4 possible
numeric values:

� 0 - CONNECTING - The connection has not yet been established

� 1 - OPEN - The connection is established and communication is possible.

� 2 - CLOSING - The connection is closing.

� 3 - CLOSED - The connection has been closed or could not be opened.

websocket.readyState
> 1

The send(data) method transmits data using this connection. The method must
return true if the connection is still established (and the data was queued and sent
successfully) or false if the connection is closed. You will be sending a string or a
variable in the send method.

websocket.send("1+1")

The close() method will close the WebSocket connection and change the readyState
attribute to 3.

websocket.close()
websocket.readyState
> 3

An event occurs whenever something changes. These are handled by what are called
Event handlers.

Event Handler name When it's triggered

onopen WebSocket opening
onclose Closes
onmessage A message is received from the server
onerror An Error occurs

Table 6.1: Event handlers and their use

15 ©AquaQ Analytics Limited 2014

A
qu
aQ

6. Using WebSockets HTML5 WebSockets and kdb+

Here is how they are used. This will log a message in the console when the Web-
Socket opens.

websocket.onopen = function() { console.log("Websocket has opened"); }
websocket.onclose = function() { console.log("Websocket has closed"); }
websocket.onmessage = function(e) { console.log(deserialize(e.data)); }
websocket.onerror = function(err) { console.log("Error - " + err); }

Another attribute that we must change is the binaryType attribute. This is required
by the c.js library and this attribute makes sure that the data comes as a typed array
making it more e�cient by minimizing network tra�c. It provides the deserialize
function shown inside the onmessage handler.

websocket.binaryType = 'arraybuffer';

In the q console you have to modify the .z.ws function which is the function that
kdb+ uses once a WebSocket message is received. The following function will interpret
the value of the string that was received and then send that value asynchronously back
down the handle .z.w. To get a list of handles that are currently connected to your
process use .z.W. Warning this isn't proof that each of the handles is a WebSocket
connection as the handles could be other processes that are connected via IPC. Another
way to do this would be to add handles that connect via WebSockets to a dictionary
inside the .z.ws function but please use with caution.

q).z.ws:{neg[.z.w] -8!value -9!x}
q).z.po:{-1"connection opened!"; 0N!x}
q).z.pc:{-1"connection closed!"; 0N!x}

16 ©AquaQ Analytics Limited 2014

A
qu
aQ

6. Using WebSockets HTML5 WebSockets and kdb+

6.3 Data Types

Before we proceed there is something that must �rst be clari�ed. In q the data types
are di�erent compared to other languages and below is a table showing how they are
interpreted by JavaScript. JavaScript tries to convert date data types to the native
JavaScript date object but this can prove problematic as it is not always accurate.

kdb+ JavaScript

list array
dictionary object
table array of objects
boolean boolean
byte number
short number
int number
long number
real number
�oat number
char string
symbol string
month object
date object
datetime object
minute object
second object
time object

Table 6.2: kdb+ data types and their equivalents in JavaScript

6.4 Formatting data in kdb+

When sending data from kdb+ to the web browser, you have to know what format it
is going to be in order to parse it correctly. You can only send strings or binary data
1 but there are multiple ways of formatting data and they include:

� Binary - Serialized raw data

� JSON - Formatted JSON string

� CSV - Converts table values to strings

� Formatted string - Format a table into HTML and then send it

1Section 5.6: https://tools.ietf.org/html/rfc6455

17 ©AquaQ Analytics Limited 2014

https://tools.ietf.org/html/rfc6455

A
qu
aQ

6. Using WebSockets HTML5 WebSockets and kdb+

Binary allows for the largest volume and precision of data to be sent. Even though
unserialized strings can be sent through WebSockets, all of the data should be serialized
before it is sent to the client. This is done by using the -8! function which returns a
IPC byte representation of the data. On the JavaScript side when the data is deseri-
alized it will interpret the data types as shown in table 6.2 and so it is not required to
be formatted in any particular way.

JSON is a lightweight data-interchange format for passing around objects that con-
tain name/value pairs, arrays and other objects. It is commonly used in web develop-
ment when passing data from server to client. It is sent as a string from the server and
parsed into an object on the client side2. After it is parsed using the JSON.parse
function it is used in the same way as the binary data type above and for this reason
the terms are often used synonymously when talking about the client side. On the
kdb+ side, the data must be formatted into a JSON string which requires additional
overhead and adds more code. Data must be parsed into JSON on the q side.

It is possible to send a CSV formatted string of a table which can then be formatted
into a HTML table by JavaScript. If you convert a table to CSV by using the .h.cd
function and compare its size to a normal table it will show that the CSV string is much
smaller than the table itself, which may come into consideration if you are updating
often and have to conserve network resources. An example of sending and parsing CSV
data is shown in section 7.3.

You could format a table into HTML inside kdb+ and once it is sent the JavaScript
could just print the table instead of parsing it like the previous options. The downside
to this is that it has a bigger overhead as q must format each table into HTML using
extra HTML tag strings and there is also more network usage.

6.5 Serialization

Serialization is the process of taking objects and converting their state information into
a form that can be stored or transported. When sending messages from the kdb+ server
to your client you must serialize them by using the -8! function and deserialize incom-
ing messages using the -9! function. Kx have released a serialization JavaScript library
in order to serialize data using JavaScript. JavaScript natively does not have these func-
tions which is why they must be included. As seen in section 7.1 a JavaScript library has
been included using <script src="http://kx.com/q/c/c.js"></script>.
By doing this you will be able to use the serialize and deserialize functions
throughout your JavaScript as long as your script appears below the include link. Please
note that it would be better if you downloaded and stored the c.js �le locally as this
would make your application independent from the uptime of kx.com and any changes
in the location of the �le.

2 More information about JSON http://www.json.org/

18 ©AquaQ Analytics Limited 2014

 http://www.json.org/

A
qu
aQ

6. Using WebSockets HTML5 WebSockets and kdb+

6.6 Display tables

To display a table on a web page as it appears in your q console, you must format it to
HTML. In order to do so you must understand the data that is sent from kdb+. In this
case a table is sent as an object which JavaScript can easily work with. The code snippet
below along with the code found in section 7.4 show how JavaScript will format an
unkeyed table to HTML. To do the same for a keyed table it is a little more di�cult, this
code is included in section 7.5. This code must be included inside your script tags and
called with the deserialized data as its argument. If you want to get familiar with the
structure of a table visit http://www.w3schools.com/html/html_tables.asp

function jsonTbl(data){
var table,colheaders,index,row,col;
table = '<table><thead><tr>';
for(colheaders in data[0]){ // Set up column headers

table+= '<th>' + colheaders + '</th>';
}
table+= '</tr></thead><tbody>';
for(index in data){ // Construct table body

row = data[index];
table+= '<tr>';
for(col in row){

table+= '<td>' + row[col] + '</td>';
}
table+= '</tr>';

}
table+= '</tbody></table>';
return table;

}

6.7 Data Handling

When sending data, you want JavaScript to interpret it properly. For simple data such
as the result of "1+1" it will be enough just to print that. Things get more complicated
when you begin sending complex data objects such as a table. If you send a unkeyed
table how would your JavaScript code know what to do with it? To do this you should
use the dictionary format (‘type‘data)!(type t;t). You then interpret it on the
JavaScript side using a data handling function such as the one below. This is a basic
data handling function that decides what to do with the data based upon its type. It
tries to match cases for unkeyed and keyed tables or defaults if it is of another type.
The jsonTbl function used below is found in section 7.5.

function dataHandler(data){
switch(data.type){

case 98: // Unkeyed Table
return jsonTbl(data.data,false);

break;
case 99: // Keyed Table

return jsonTbl(data.data,true);
break;
default:

return data.data;
break;

19 ©AquaQ Analytics Limited 2014

http://www.w3schools.com/html/html_tables.asp

A
qu
aQ

6. Using WebSockets HTML5 WebSockets and kdb+

}
}

6.8 Interpreting client data

Just as you handle data on the JavaScript side, it is also good practice to do something
similar on the kdb+ server side. With our current .z.ws setup it is easy to access func-
tions, it is simply a string "function[argument1;agrument2]" with the value
function applied to it. The current setup also means you will have no control over errors
or how a certain data type is interpreted. The way to �x this is to use an evaluation
function that is called every time the client sends a message to the server. The code be-
low checks if the input value is a dictionary (JavaScript sent an object) and then checks
if it is in the proper format which is (‘func‘arg1‘arg2)!("function";12;45)
and will return the function result. It doesn't accept strings. This is the beginning of
properly handling di�erent client data types and error trapping.

q)evaluate:{$[99h=abs[type x];$[not `func in key x;'"dictionary must contain `func in
key";(value x`func) . value `func _ x];'"cannot handle this type"]}

q)evaluatetrapped:{@[evaluate;x;{'"failed to execute ",(-3!x)," : ",y}[x]]};
q).z.ws:{neg[.z.w] -8!evaluatetrapped[-9!x]}

JavaScript
var query = {func:"test",arg1:2,arg2:3};

On applications that are public facing it would be a good idea to only allow the
client a certain amount of access, such as a whitelist of functions. It is good practice to
restrict access, control what data the server will interpret and what data is returned.

6.9 Sending data when it's updated

As mentioned in the introduction, the major advantage to WebSockets is the ability
for the server to send data when it is created or when previous data is updated. For a
basic non bulletproof example, we will use a table that gains a new row each time it
is updated. This will give you an analogous example that you could extend to many
projects.

1. Create a function that sends data to a list of WebSocket handles

2. Create a function that checks the table count by comparing it to a variable that
stores the previous count

3. Put that inside the .z.ts function and set the timer to \t 1000

4. Connect via WebSockets

q)sendData:{neg[x] -8!y}
q)prevc:0;
q)checkTable:{$[prevc<count x;[prevc::count x;sendData\:[key .z.W;x]];::]}

20 ©AquaQ Analytics Limited 2014

A
qu
aQ

6. Using WebSockets HTML5 WebSockets and kdb+

q).z.ts:{checkTable[table]}
q)\t 1000

21 ©AquaQ Analytics Limited 2014

A
qu
aQ

Chapter 7

Examples

7.1 index.html �le

7.1.1 HTML �le

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>WebSocket and kdb+ Training</title>
<meta name="author" content="Glen Smith at AquaQ Analytics">
<!--[if lt IE 9]>
<script src="http://html5shiv.googlecode.com/svn/trunk/html5.js"></script>
<![endif]-->
<link rel="stylesheet" type="text/css" href="main.css">
</head>
<body>
<h3>Result:</h3>
<div id="result"></div>
<script src="http://kx.com/q/c/c.js"></script>
<script src="main.js"></script>
</body>
</html>

7.1.2 CSS - main.css

table{ border-spacing:0px; }
th{ border-bottom:1px solid #DDD; }
td{
padding:5px;
margin:0;
border-width:0px 0px 1px 0px;
border-color:#CCC;
border-style:solid;

}
.keyed{ background:#CCC; }

7.1.3 JavaScript - main.js

22

A
qu
aQ

7. Examples HTML5 WebSockets and kdb+

var query = "x"; // Enter query here

var result = document.getElementById("result");
var websocket = new WebSocket("ws://HOST:PORT");
websocket.binaryType = 'arraybuffer'; // Required by c.js
websocket.onopen = function() { // Event handler configuration
console.log("Websocket has opened");
websocket.send(serialize(query));

}
websocket.onclose = function() {
console.log("Websocket has closed");

}
websocket.onerror = function(err) { console.log(err); }
websocket.onmessage = function(e) {
var data = deserialize(e.data);
console.log(data);

}

7.2 Retrieve atom

7.2.1 HTML �le

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>WebSocket and kdb+ Demonstration - 1</title>
<meta name="author" content="Glen Smith at AquaQ Analytics">
<!--[if lt IE 9]>
<script src="http://html5shiv.googlecode.com/svn/trunk/html5.js"></script>
<![endif]-->

</head>
<body>
<h3>q code</h3>
<code>.z.ws:{neg[.z.w] -8!value -9!x}</code>
<h3>Result:</h3><div id="result"></div>
<script src="http://kx.com/q/c/c.js"></script>
<script src="example1.js"></script>
</body>
</html>

7.2.2 JavaScript - example1.js

var query = "1+1"; // Enter query here

var result = document.getElementById("result");
var websocket = new WebSocket("ws://HOST:PORT");
websocket.binaryType = 'arraybuffer'; // Required by c.js
websocket.onopen = function() { console.log("Websocket has opened"); websocket.send(

serialize(query)); } // Event handler configuration
websocket.onclose = function() { console.log("Websocket has closed"); }
websocket.onmessage = function(e) { var data = deserialize(e.data); console.log(data)

; result.innerHTML = data; }
websocket.onerror = function(err) { console.log(err); }

23 ©AquaQ Analytics Limited 2014

A
qu
aQ

7. Examples HTML5 WebSockets and kdb+

7.3 CSV table and format to HTML

Create a table t and copy the q code to your open q console.

7.3.1 HTML �le

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>WebSocket and kdb+ Demonstration - 2</title>
<meta name="author" content="Glen Smith at AquaQ Analytics">
<!--[if lt IE 9]>
<script src="http://html5shiv.googlecode.com/svn/trunk/html5.js"></script>
<![endif]-->

</head>
<body>
<h3>q code</h3>
<code>tblCsv:{"\\n" sv .h.cd x};.z.ws:{x:value -9!x; neg[.z.w] -8!$[(type x) in 98 99

h;(`table;tblCsv[x]);(`result;x)]}</code>
<h3>Result:</h3><div id="result"></div>
<script src="http://kx.com/q/c/c.js"></script>
<script src="example2.js"></script>
</body>
</html>

7.3.2 JavaScript �le - example2.js

var query = "t"; // Enter query here

var result = document.getElementById("result");
var websocket = new WebSocket("ws://HOST:PORT");
websocket.binaryType = 'arraybuffer'; // Required by c.js
websocket.onopen = function() { console.log("Websocket has opened"); websocket.send(

serialize(query)); } // Event handler configuration
websocket.onclose = function() { console.log("Websocket has closed"); }
websocket.onmessage = function(e) { var data = deserialize(e.data); console.log(data)

; result.innerHTML = dataHandler(data); }
websocket.onerror = function(err) { console.log(err); }
function csvTbl(data){ // Change csv string into a HTML formatted table
var i,table = "",rows = data.split("\\n"),header = rows[0].split(","),rowcount =

rows.length;
table += "<table><thead><th>" + header.join("</th><th>") + "</th></tr></thead><

tbody>";
for(i=1;i<rowcount;i++){

table+="<tr><td>" + rows[i].split(",").join("</td><td>") + "</tr>";
}
table+="</tbody></table>";
return table;

}
function dataHandler(data){ // What to do with the data
switch(data[0]){

case "result":
return data[1];
break;

case "table":
return csvTbl(data[1]);

break;

24 ©AquaQ Analytics Limited 2014

A
qu
aQ

7. Examples HTML5 WebSockets and kdb+

}
}

7.4 JSON table and format to HTML

Create an unkeyed table t and copy the q code to your open q console. You must load
the json_training.q �le in your kdb+ process.

7.4.1 HTML �le

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>WebSocket and kdb+ Demonstration - 3</title>
<meta name="author" content="Glen Smith at AquaQ Analytics">
<!--[if lt IE 9]>
<script src="http://html5shiv.googlecode.com/svn/trunk/html5.js"></script>
<![endif]-->
<style>table{border-spacing: 0px;}td,th{border:1px solid #DDD;}.keyed{background:#CCC

;}</style>
</head>
<body>
<h3>q code</h3>
<code>.z.ws:{x:value -9!x; neg[.z.w] -8!.utl.json[$[(type x) in 98 99h;(`type`data)!(

type x;x);(`type`data)!(`result;x)]]}</code>
<h3>Result:</h3><div id="result"></div>
<script src="http://kx.com/q/c/c.js"></script>
<script src="example3.js"></script>
</body>
</html>

7.4.2 JavaScript �le - example3.js

var query = "t"; // Enter query here
var result = document.getElementById("result");
var websocket = new WebSocket("ws://HOST:PORT");
websocket.binaryType = 'arraybuffer'; // Required by c.js
websocket.onopen = function() { console.log("Websocket has opened"); websocket.send(

serialize(query)); } // Event handler configuration
websocket.onclose = function() { console.log("Websocket has closed"); }
websocket.onmessage = function(e) { var data = JSON.parse(deserialize(e.data));

result.innerHTML = dataHandler(data); }
websocket.onerror = function(err) { console.log(err); }
function jsonTbl(data){
var table,colheaders,index,row,col;
table = '<table><thead><tr>';
// Set up column headers
for(colheaders in data[0]){

table+= '<th>' + colheaders + '</th>';
}
// Construct table body
table+= '</tr></thead><tbody>';
for(index in data){

row = data[index];

25 ©AquaQ Analytics Limited 2014

A
qu
aQ

7. Examples HTML5 WebSockets and kdb+

table+= '<tr>';
for(col in row){

table+= '<td>' + row[col] + '</td>';
}
table+= '</tr>';

}
table+= '</tbody></table>';

return table;
}
function dataHandler(data){
switch(data.type){

case "result":
return data.data;

case 98:
return jsonTbl(data.data,false);

case 99:
return jsonTbl(data.data,true);

}
}

7.5 JSON table function for formatting keyed and unkeyed

tables

If the table is keyed, the second argument should be true and vice versa. You must
modify .z.ws and the dataHandler function. A suitable dataHandler function
is shown in 7.4. This function should be added to the web page's JavaScript �le.

function jsonTbl(data,keyed){
var table,keyheaderdata,headerdata,keyedbodydata,colheaders,i,j,col;

table = '<table><thead><tr>';
headerdata = data[0]; // Default headerdata for unkeyed cols
bodydata = data;

if(keyed && data.key){
keyheaderdata = data.key[0]; // First row of keyed data
headerdata = data.value[0]; // First row of unkeyed data
bodydata = data.value; // Change unkeyed body data

// Set up keyed column headers
for(colheaders in keyheaderdata){

table+= '<th class="keyed">' + colheaders + '</th>';
}

}
// Set up column headers
for(colheaders in headerdata){

table+= '<th>' + colheaders + '</th>';
}
// Finish headers and construct table body
table+= '</tr></thead><tbody>';
for(i in bodydata){

table+= '<tr>';
row = bodydata[i];
// Keyed body data
if(keyed){

keyedbodydata = data.key[i];
for(j in keyedbodydata){

26 ©AquaQ Analytics Limited 2014

A
qu
aQ

7. Examples HTML5 WebSockets and kdb+

table+= '<td class="keyed">' + keyedbodydata[j] + '</td>';
}

}
// unkeyed body data
for(col in row){

table+= '<td>' + row[col] + '</td>';
}
table+= '</tr>';

}
table+= '</tbody></table>';
return table;

}

27 ©AquaQ Analytics Limited 2014

A
qu
aQ

Chapter 8

Exercises

8.1 HTML and JavaScript

1. Complete all lessons http://www.codecademy.com/tracks/web

2. Complete lessons 1 to 4 http://www.codecademy.com/tracks/javascript

3. Copy the HTML5 Template found in section 3.4 to a �le called template.html.
Change the <h1> tag's content to say your name.

4. Change the <h1> content using JavaScript.

5. Use jQuery and repeat above but only change its value when it is clicked.

8.2 kdb+ and JavaScript

1. Copy the code found in section 7.1 to a �le called index.html. Modify the .z.ws
function to receive deserialized incoming messages and return the serialized result
back down the handle. Create a WebSocket connection and get the value of
"1+1" from the kdb+ server using your index.html �le. You will have to open
the developer console in Chrome to see the result.
Hint: You can only send a message once the WebSocket has opened.

2. Let's retrieve more complex objects. Create an arbitrary unkeyed table in your
q session and assign it to a variable. Retrieve it using JavaScript.

3. So far we have been using the console to see the data. Now display this table
data in a HTML formatted table.
Hint: In order to display your table use
result.innerHTML = jsonTbl(deserialize(data))

4. Build a data handler function to handle di�erent data types
Hint: result.innerHTML = dataHandler(deserialize(data))

28

http://www.codecademy.com/tracks/web
http://www.codecademy.com/tracks/javascript

A
qu
aQ

Chapter 9

Answers

9.1 HTML and JavaScript

1. The answers are provided on the site

2. The answers are provided on the site

3. <h1 id="header">Change this</h1>
4.

var header = document.getElementById("header");
header.innerHTML = "Changed this using JavaScript";

$('#header').click(function(){
$(this).html("Changed using jQuery");

});

9.2 kdb+ and JavaScript

5.1. Copy the code from section 7.1 and change var query = "1+1". Check the
JavaScript console for the result. The .z.ws function is shown below.

.z.ws:{neg[.z.w] -8!value -9!x}

2. After you have created the unkeyed table in your q session and assigned it to a
variable, change var query = "tablename".

3. Copy the jsonTbl function from section 6.6 into your JavaScript code. Also
write result.innerHTML=jsonTbl(data) inside the websocket.onmessage
handler function.

4. Copy the dataHandler function from section 6.7 and include it in your JavaScript
code. Also write result.innerHTML=dataHandler(data) inside the
websocket.onmessage handler function. The .z.ws function is shown below.

.z.ws:{x:value -9!x; neg[.z.w] -8!(`type`data)!(type x;x)}

29

	Company Overview
	What are HTML5 and WebSockets?
	Brief overview
	What are WebSockets?
	WebSocket protocol
	When to use WebSockets

	HTML
	Tags
	CSS
	Integrating JavaScript
	HTML5 Template
	Directory structure

	JavaScript
	Data Types
	Arrays
	Objects
	Functions
	Manipulating HTML content

	jQuery
	Install
	Manipulating HTML content
	Event Handlers
	Effects
	Traversing the DOM

	Using WebSockets
	Getting started
	How to use WebSockets
	Data Types
	Formatting data in kdb+
	Serialization
	Display tables
	Data Handling
	Interpreting client data
	Sending data when it's updated

	Examples
	index.html file
	HTML file
	CSS - main.css
	JavaScript - main.js

	Retrieve atom
	HTML file
	JavaScript - example1.js

	CSV table and format to HTML
	HTML file
	JavaScript file - example2.js

	JSON table and format to HTML
	HTML file
	JavaScript file - example3.js

	JSON table function for formatting keyed and unkeyed tables

	Exercises
	HTML and JavaScript
	kdb+ and JavaScript

	Answers
	HTML and JavaScript
	kdb+ and JavaScript

