Aqua(@ TorQ

email: web:
info@aquaq.co.uk WWW.aguag.co.uk

AQUAQ ANALYTICS

mailto:info@aquaq.co.uk
www.aquaq.co.uk

Revision History

Revision Date

1.0
1.1
1.1

1.1
1.1
1.2

2014.02.12
2014.03.11
2014.03.25

2014.04.02
2014.04.02
2014.09.19

Author(s)
AquaQ

Tobias Harper

Glen Smith

Louise Belshaw
Andrew Steele

Deividas
jauskas

Maci-

Description

First version released

Housekeeping process information added
html.q and Monitor HTML5 front end in-
formation added

compress.q utitlity information added
Filealerter process information added
Added info on connections to external
(non-TorQ) processes

Copyright (©2013-2014 AquaQ Analytics Limited
Suite 5, Sturgen Building, 9-15 Queen Street, Belfast, BT1 6EA
May be used free of charge. Selling without prior written consent prohibited. Obtain
permission before redistributing. In all cases this notice must remain intact.

Contents

I Company Overview|

2_Overviewl
2.1 Whatiskdb+7
2.2 What 1s AquaQ TorQ7|
2.3 Do I Really Have to Read This Whole Document?|
[2.4 Operating System and kdb+ Version|
D5 Ticensd. o o

[3 Getting Started|
I;i.l l ils: :illll!:l !ll§:I
3.2 Using torg.ql. e
8.3 Environment Variables oo oL
8.4 _Process Identificationl.
3.5 Logging|
3.6 Configuration Loading|
3.7 Code Loading|
8.8 Imitialization Errorsf.o

[4 Message Handlers|
4.1 logusage.ql
4.2 controlaccess.q
4.3 trackchents.q o
4.4 trackservers.qlo
4.0 zpsignore.qf
4.6 Diagnostic Reporting| o

[Connection Management|
D.1 Connectionsl
Iji.2 l l!!!;s::ﬁ “lllit!l]ls::l
0.3 Connection Passwordsl L.
5.4 Retrieving and Using Handles|
9.5 Connecting To Non-TorQ) Processes|.
5.6 Manually Adding And Using Connections|

12
13
14
15
16
16
17
17
18

19
21
22
22
23
23
23

CONTENTS CONTENTS
[6_Utilities| 29
6.1 api.q 29
.................................... 30
..................................... 32
6.4 pubsub.ql. 32
6.5 heartbeat.q 32
6.6 cache.ql. 32
6.7 timezone.q|. 34
6.8 compress.ql. 34
6.9 help.gl 36
..................................... 37
6.11 Additional Utilities 37
BI2TUITAPT . . . o oo oo e e e e 37
[7__Visualisationl 39
[r.1 kdb+ Utilities|. 39
7.2 JavaScript Utilities|o 39
M3 Outhne . . . oo oo e e e 40

4 xample| 42
[c.5 Further Workl 42

8 Processes! 43
[8.1 Discovery Service| 43
B.1.1 Overviewl 43

[8.1.2 Operation| 44

8.1.3 Available Processed L. 45

8. sateway| e 46
[8.2.1 Asynchronous Behaviour|. 46

[8.2.2 Synchronous Behaviour| 0000000 47

[8.2.3° Process Discovery|. Lo 47

8.2.4 Error Handling| 0. 47

825 Client Callsl 48

[8.2.6 Non kdb+ Clients| 51

8.3 Tickerplant Log Replay] 93
8.4 Housekeeping| 54
8.5 File Alerterl 55
8.6 Monitor] 57
861 HITMISHfrontend 58

BT K. . . oo oo e e 59

[9 Integration with kdb-tick] 61
9.1 process.csv| 61
9.2 Tickerplant| oo 62
9.3 RDBI. 63

CONTENTS

Aqua@ TorQ

94 HDBI.
9.5 Discovery Servicel
9.6 Gateway|.
9.7 Kill the System|
9.8 Debugging|.
9.9 Quick Startf

©AquaQ Analytics Limited 2014

Chapter 1

Company Overview

AquaQ Analytics Limited is a provider of specialist data management, data analytics
and data mining services. We also provide strategic advice, training and consulting
services in the area of market-data collection to clients predominantly within the capital
markets sector. Our domain knowledge, combined with advanced analytical techniques
and expertise in best-of-breed technologies, helps our clients get the most out of their
data.

The company is currently focussed on four key areas, all of which are conducted
either on client site or near-shore:

e Kdb+ Consulting Services: Development, Training and Support. We are an
official implementation and training partner of Kx Systems;

e Real Time GUI Development Services;
e SAS Analytics Services;

e Providing IT consultants to investment banks with Java, .NET and Oracle expe-
rience.

The company currently has a headcount of 30 consisting of both full time employees
and contractors and is actively hiring additional resources. Some of these resources are
based full-time on client site while others are involved in remote/near-shore develop-
ment and support work from our Belfast headquarters. To date we have MSAs in place
with 6 major institutions across the UK and the US.

Please feel free to contact us if you feel we may be able to assist you with your
kdb+, data or analytics needs.

info@aquaq.co.uk

Chapter 2

Overview

2.1 What is kdb+7?

kdb+ is the market leading timeseries database from Kx Systemg] kdb-+ is used
predominently in the Financial Services sector to capture, process and analyse billions
of records on a daily basis, with Kx counting almost all of the top tier investment
banks as customers. kdb+ incorporates a programming language, q, which is known
for its performance and expressive power. Given the unsurpassed data management and
analytical capabilities of kdb+, the applicability of kdb+ technology extends beyond
the financial domain into any sector where rapid pre-built or adhoc analysis of large
datasets is required. Other sectors which have good use cases for kdb+ include utilities,
pharmaceuticals, telecoms, manufacturing, retail and any sector utilising telemetry or
sensor data.

2.2 What is AquaQ TorQ?

AquaQ TorQ is a framework which forms the basis of a production kdb-+ system by
implementing some core functionality and utilities on top of kdb+, allowing develop-
ers to concentrate on the application business logic. We incorporated as many best
practices as possible, with particular focus on performance, process management, diag-
nostic information, maintainability and extensibility. We have kept the code as readable
as possible using descriptive comments, error messages, function names and variable
names. Wherever possible, we have tried to avoid re-inventing the wheel and instead
have used contributed code from code.kx.com (either directly or modified). All code
sections taken from code.kx.com are referenced in this document.

Aqua@ TorQ can be extended or modified as required. We have chosen some default
behaviour, but it can all be overridden. The features of AquaQ TorQ are:

e Process Management: Each process is given a type and name. By default these
are used to determine the code base it loads, the configuration loaded, log file

Twww . kx . com

www.kx.com

. OVERVIEW AquaQ TorQ

naming and how it reports itself to discovery services. Whenever possible we have
tried to ensure that all default behaviour can be overridden at the process type
level, and further at the process name level.

e Code Management: Processes can optionally load common or process type/name
specific code bases. All code loading is error trapped.

e Configuration Management: Configuration scripts can be loaded as standard and
with specific process type/name configuration overriding default values. Config-
uration scripts are loaded in a specific order; default, then process type specific,
then process name specific. Values loaded last will override values loaded previ-
ously.

e Usage Logging: All process usage is logged to a single text log file and period-
ically rolled. Logging includes opening/closing of connections, synchronous and
asynchronous queries and functions executed on the timer. Logged values include
the request, the details of where it came from, the time it was received, the time
it took, memory usage before and after, the size of the result set, the status and
any error message.

e Incoming and Outgoing Connection Management: Incoming (client) and outgoing
(server) connections are stored and their usage monitored through query counts
and total data size counts. Connections are stored and retrieved and can be
set to automatically be re-opened as required. The password used for outgoing
connections can be overridden at default, process type and process name level.

e Access Controls: Basic access controls are provided, and could be extended. These
apply restrictions on the IP addresses of remote connections, the users who can
access the process, and the functions that each user can execute. A similar
hierarchical approach is used for access control management as for configuration
management.

e Timer Extensions: Mechanism to allow multiple functions to be added to the
timer either on a repeating or one-off basis. Multiple re-scheduling algorithms
supplied for repeating timers.

e Standard Out/Error Logging: Functions to print formatted messages to standard
out and error. Hooks are provided to extend these as required, e.g. publication
to centralised logging database. Standard out and error are redirected to appro-
priately named, timestamped and aliased log files, which are periodically rolled.

e Error Handling: Different failure options are supplied in case code fails to load;
either exit upon failure, stop at the point of failure or trap and continue.

e Visualisation: Utilities to ease GUI development using websockets and HTML5.

7 ©AquaQ Analytics Limited 2014

2. OVERVIEW AquaQ TorQ

e Documentation and Development Tools: Functionality to document the system
is built into AquaQ TorQ, and can be accessed directly from every q session. De-
velopers can extend the documentation as they add new functions. Functionality
for searching for functions and variables by name and definition is provided, and
for ordering variables by memory usage. The standard help.q from code.kx is also
included.

o Utilities: We intend to build out and add utilities as we find them to be suitably
useful and generic. So far we have:

1. Async Messaging: allows easy use of advanced async messaging methods
such as deferred synchronous communication and async communication us-
ing postback functions;

2. Caching: allows a result set cache to be declared and result sets to be stored
and retrieved from the cache. Suitable for functions which may be run
multiple times with the same parameters, with the underlying data not
changing in a short time frame;

3. Timezone handling: derived from code.kx, allows conversion between times-
tamps in different timezones;

4. Heartbeating: each process can be set to publish heartbeats, and subscribe
to and manage heartbeats from other processes in the environment.

5. Compression: allows compression of a database. This can be performed
using a set of parameters for the entire database, but also gives the flexibilty
of compressing user-specified tables and/or columns of those tables with
different parameters if required, and also offers decompression.

AquaQ TorQ will wrap easily around kdb+tick and therefore around any tickerplant,
RDB, HDB or real time processing application. We currently have several customised
processes of our own:

e Discovery Service: Every process has a type, name and set of available attributes,
which are used by other processes to connect to it. The Discovery Service is a
central point that can be used to find other available processes. Client processes
can subscribe to updates from the discovery service as new processes become
available- the discovery service will notify its subscribers, which can then use the
supplied hook to implement required behavior e.g. connect to the newly available
process;

e Gateway: A fully synchronous and asynchronous gateway is provided. The gate-
way will connect to a defined list of process types (can be homogenous or hetero-
geneous processes) and will route queries across them according to the priority
of received requests. The routing algorithms can be easily modified e.g. give
priority to user X, or only route queries to processes which exist in the same
data centre or geographical region to avoid the WAN (this would entail using the

8 ©AquaQ Analytics Limited 2014

2. OVERVIEW AquaQ TorQ

process attributes). The gateway can either return the result to the client back
down the same handle, or it can wrap it in a callback function to be invoked on
the client;

e Tickerplant Log Replay: A process for replaying tickerplant log files to create
on-disk data sets. Extended features are provided for only replaying subsets of
log files (by message number and/or table name), replaying in chunks, invoking
bespoke final behaviour etc.;

e Housekeeping: A process to undertake housekeeping tasks periodically, such as
compressing and removing files that are no longer used. Housekeeping looks up
a file of instructions and performs maintenance tasks on directories accordingly.
Features allow selective file deletion and zipping according to file age, including
a search string parameter and the ability to exclude items from the search. The
process can be scheduled, or run immediately from the command line and can be
extended as required to incorporate more tasks.

e File-alerter: A process to periodically scan a set of directories and execute a
function based on the availability of a file. This is useful where files may arrive
to the system during the day and must be acted upon (e.g. files are uploaded to
a shared directory by users/clients). The functions to execute are defined by the
user and the whole process is driven by a csv file detailing the file to search for,
the function to execute and, optionally, a directory to move the file to after it has
been processed.

e Monitor: A basic monitoring process which uses the Discovery Service to locate
the other processes within the system, listens for heartbeats, and subscribes for
log messages. This should be extended as required but provides a basic central
point for system health checks;

e Kill: A process used to kill other processes, optionally using the Discovery Service
to locate them.

2.3 Do I Really Have to Read This Whole Document?

Hopefully not. The core of AquaQ Tor(Q is a script called torq.q and we have tried to
make it as descriptive as possible, so perhaps that will suffice. The first place to look
will be in the config files, the main one being $KDBCONFIG /settings/default.q. This
should contain a lot of information on what can be modified. In addition:

e We have added a load of usage information:

aquag$ g torg.q -usage
KDB+ 3.1 2013.10.08 Copyright (C) 1993-2013 Kx Systems

General:
This script should form the basis of a production kdb+ environment.

9 ©AquaQ Analytics Limited 2014

2. OVERVIEW AquaQ TorQ

It

can be sourced from other files if required, or used as a launch script
before loading other files/directories using either -load or —-loaddir
flags

etc

If sourcing from another script there are hooks to modify and extend the usage
information as required.

e We have some pretty extensive logging:

aqua
KDB+

2013

2013

2013

2013

2013

g$ g torg.q -p 9999 -debug
3.1 2013.10.08 Copyright (C) 1993-2013 Kx Systems

.11.05D12:22:42.597500000|aquag|torg.q _3139_9999|INF |init|trap mode (
initialisation errors will be caught and thrown, rather than causing an
exit) 1s set to O
.11.05D12:22:42.597545000 | aquag|torg.q_3139_9999|INF|init|stop mode (
initialisation errors cause the process loading to stop) is set to O
.11.05D12:22:42.597810000|aquag|torg.q _3139_9999|INF |init |attempting to
read required process parameters proctype,procname from file /torghome/
config/process.csv
.11.05D12:22:42.598081000|aquag|torg.q_3139_9999|INF|init|read in process
parameters of proctype=hdb; procname=hdbl
.11.05D12:22:42.598950000 | aquaq|hdbl | INF |fileload|config file /torghome/
config/default.q found

EGE@

e We have added functionality to find functions or variables defined in the session,

and also to search function definitions.

q) .api.f max

name | vartype namespace public descrip .
———————————————————— | -
maxs | function .qg 1 "

mmax | function .g 1 "

.clients.MAXIDLE | variable .clients O "

.access.MAXSIZE | variable .access 0 "

.cache.maxsize | variable .cache 1 "The maximum size in
.cache.maxindividual| variable .cache 1 "The maximum size in
max | primitive 1 "

q) first 0!.api.p" .api

name | C.api.f

vartype | "~ function

namespace| .api

public | 1b

descrip | "Find a function/variable/table/view in the current process"
params | "[string:search string]"

return | "table of matching elements"

name

q) .api.p’ .api

| vartype namespace public descrip

———————— e
. f | function .api 1 "Find a function/variable/tabl..
.P | function .api 1 "Find a public function/variab..
.u | function .api 1 "Find a non-standard g public

.S | function .api 1 "Search all function definitio..
i.find | function .api 1 "Generic method for finding fu..
i.search | function .api 1 "Generic method for searching ..
i.add | function .api 1 "Add a function to the api des..

10 ©AquaQ Analytics Limited 2014

2. OVERVIEW

Aqua@Q TorQ

l.api.fullapil function .api 1

"Return the full function api

e We have incorporated help.q.

q) help®

adverb | adverbs/operators
attributes| data attributes

cmdline | command line parameters

data | data types

define | assign, define, control and debug
dotz | .z locale contents

errors | error messages

save | save/load tables

syscmd | system commands

temporal | temporal - date & time casts
verbs | verbs/functions

e We have separated and commented all of our config:

\d .proc

logroll:1lb
ete

loadcommoncode: 1lb
loadprocesscode: 0b
loadnamecode: 0b

loadhandlers:1b

aquag$ head config/default.q
/— Default configuration - loaded by all processes

/— Process initialisation

/- whether to load the
/- ${KDBCODE } /common

/- whether to load the
/- S${KDBCODE}/{process
/- whether to load the
/- S${KDBCODE}/{name of
/- whether to load the
/- S${KDBCODE}/handlers
/- whether to roll the

common code defined at

process specific code defined at
type}

name specific code defined at
process}

message handler code defined at

std out/err logs daily

2.4 Operating System and kdb+ Version

AquaQ TorQ has been built and tested on the linux and OSX operating systems though
as far as we are aware there is nothing that would make this incompatible with So-
laris or Windows. It has also been tested with kdb+ 3.1 and 2.8. Please report any
incompatibilities with other kdb+ versions or operating systems.

2.5 License

This code is released under the MIT licensd2l

2http://opensource.org/licenses/MIT

11

©AquaQ Analytics Limited 2014

http://opensource.org/licenses/MIT

Chapter 3

Getting Started

kdb+ is very customisable. Customisations are contained in g scripts (.q files), which
define functions and variables which modify the behaviour of a process. Every q process
can load a single q script, or a directory containing q scripts and/or q data files. Hooks
are provided to enable the programmer to apply a custom function to each entry point
of the process (.z.p*), to be invoked on the timer (.z.ts) or when a variable in the top
level namespace is amended (.z.vs). By default none of these hooks are implemented.

We provide a codebase and a single main script, torq.q. torq.q is essentially a
wrapper for bespoke functionality which can load other scripts/directories, or can be
sourced from other scripts. Whenever possible, torq.q should be invoked directly and
used to load other scripts as required. torq.q will:

e ensure the environment is set up correctly;
e define some common utility functions (such as logging);

e execute process management tasks, such as discovering the name and type of the
process, and re-directing output to log files;

e load configuration;
e load the shared code based;
e set up the message handlers;

e load any required bespoke scripts.

The behavior of torq.q is modified by both command line parameters and config-
uration. We have tried to keep as much as possible in configuration files, but if the
parameter either has a global effect on the process or if it is required to be known before
the configuration is read, then it is a command line parameter.

12

3. GETTING STARTED

Aqua@Q TorQ

3.1 File Structure

An example file structure with approximate description is displayed below.

| -basecode
|-———torg.q
|-——setenv.sh

| ———code
common

timezone.q
handlers
apidetails.qg
controlaccess

logusage.q
order.txt
trackclients.
trackservers.
zpsignore.q

processes
discovery.q
filealerter.qg
gateway.q
housekeeping.

tickerlogrepl
|-——config

compressionconf
filealerter.csv

passwords
default.txt
gateway.txt
hdb.txt
permissions

hdb_users.csv
settings
default.qgq
discovery.q
filealerter.q
gateway.q

2=

-q

al
g9

al

ay.

-~
ig

Z=

default_functions.csv
default_hosts.csv
default_users.csv

<—
L=
Z=

Main torqg script

example script to set necessary environment variables
(will not work on Windows)

code directory, defined by $KDBCODE

common code base dir, loaded by all processes

used to augment the api details in the process

used to define order that scripts are loaded

message handlers, optionally loaded by all processes

example code dir for process with type or name "hdb"
example code dir for process with type or name "rdb"
process script directory

q
config directory, defined by S$SKDBCONFIG

.csv <- definition of parameters to use for compression

housekeeping.csv <- definition of parameters for housekeeping process

definition of proc type and name for each host:port
timezone data file

password files contain passwords for external connections
default password

password used by proc name/type "gateway"

permissions files
<- default permissions files

<- users file used by proc name/type "hdb"
config scripts
default configuration
all other config scripts are loaded by processes

with a matching name or type

13 ©AquaQ Analytics Limited 2014

3. GETTING STARTED AquaQ TorQ

| ======= monitor.qg

| === tickerlogreplay.q

| ======= housekeeping.q

|-—-logs <- log directory, defined by $KDBLOGS

| ———html <- html direcory, defined by S$KDBHTML
[===== css <- CSS file directory

[——=———— bootstrap.min.css <- Bootstrap wireframe style
| s bootstrap-theme.min.css

[——=———= main.css <- Stylings for the front end
|————- img <- 1images file directory

|====—== logo. jpg <- AgquaQ Analytics logo

| ——————— favicon.ico <- Favicon

|===== js <- JavaScript file directory
[——=———= vendor <- Common JavaScript libraries
|===m=m=== bootstrap.min. js

e — jquery-1.11.0.min. js

|===m===== d3.v3.min.js

|[==—mme—— c.Jjs

|————————= modernizr-2.6.2-respond-1.1.0.min. js

| —————— kdbconnect. js <- JavaScript library for kdb+ WebSockets connection
[——=———— monitor.js <- JavaScript specific to the front end

[======= startmonitor. js <- Holds data bindings and sets up UI

|===== index.html <- Contains front end HTML

3.2 Using torq.q

torq.q can be invoked directly from the command line and be set to source a specified
file or directory. torq.q requires the 3 environment variables to be set (see section .
If using a unix environment, this can be done with the setenv.sh script. To start a
process in the foreground without having to modify any other files (e.g. process.csv)
you need to specify the type and name of the process as parameters. An example is
below.

$. setenv.sh
$ g torg.qg -debug -proctype testproc -procname testl

To load a file, do:

$ g torg.q -load myfile.q —-debug -proctype testproc -procname testl

It can also be sourced from another script. If this is the case, some of the variables
can be overridden, and the usage information can be modified or extended. Any variable
that has a definition like below can be overridden from the loading script.

myvar:Q@[value; ‘myvar;1l 2 3]

The available command line parameters are:

14 ©AquaQ Analytics Limited 2014

3. GETTING STARTED

Aqua@Q TorQ

Cmd Line Param

|

Description

-procname Xx -proctype y
-procfile x

-load x [y..z|

-loaddir x [y..z]

-trap

-stop
-noredirect

-noredirectalias

-noconfig
-nopi

-debug
-usage

The process name and process type

The name of the file to get the process information from
The files or database directory to load

Load all .q, .k files in specified directories

Any errors encountered during initialization when loading
external files will be caught and logged, processing will
continue

Stop loading the file if an error is encountered but do not
exit

Do not redirect std out/std err to a file (useful for debug-
ging)

Do not create an alias for the log files (aliases drop any
suffix e.g. timestamp suffix)

Do not load configuration

Reset the definition of .z.pi to the initial value (useful for
debugging)

Equivalent to [-nopi -noredirect]

Print usage info and exit

Table 3.1: torq.q Command Line Parameters

In addition any process variable in a namespace (.*.*) can be overridden from the
command line. Any value supplied on the command line will take priority over any
other predefined value (.e.g. in a configuration or wrapper). Variable names should be
supplied with full qualification e.g. -.servers. HOPENTIMEOUT 5000.

3.3 Environment Variables

Three environment variables are required:

’ Environment Variable \ Description

KDBCONFIG
KDBCODE
KDBLOGS

The base configuration directory
The base code directory
Where standard out/error and usage logs are written

Table 3.2: Required Environment Variables

torq.q will check for these and exit if they are not set. If torq.q is being sourced
from another script, the required environment variables can be extended by setting
.proc.envvars before loading torq.q.

15 ©AquaQ Analytics Limited 2014

3. GETTING STARTED AquaQ TorQ

3.4 Process Identification

At the crux of AquaQ TorQ is how processes identify themselves. This is defined by
two variables - .proc.proctype and .proc.procname which are the type and name of
the process respectively. These two values determine the code base and configuration
loaded, and how they are connected to by other processes.

The most important of these is the proctype. It is up to the user to define at
what level to specify a process type. For example, in a production environment it
would be valid to specify processes of type "hdb" (historic database) and "rdb" (real
time database). It would also be valid to segregate a little more granularly based on
approximate functionality, for example "hdbEMEA" and "hdbAmericas". The actual
functionality of a process can be defined more specifically, but this will be discussed
later. The procname value is used solely for identification purposes. A process can
determine its type and name in one of four ways:

1. From the process file in the default location of SKDBCONFIG /process.csv;
2. From the process file defined using the command line parameter -procfile;
3. Using the command line parameters -proctype and -procname;

4. By defining .proc.proctype and .proc.procname in a script which loads torq.q.

For options 3 and 4, both parameters must be defined using that method or neither
will be used (the values will be read from the process file). The process file has format
as below.

aquag$ cat config/process.csv
host, port, proctype, procname
aquaq, 9997, rdb, rdb_europe_1
aquaq, 9998, hdb, hdb_europe_1
aquaqg, 9999, hdb, hdb_europe_2

The process will read the file and try to identify itself based on the host and port
it is started on. The host can either be the value returned by .z.h, or the ip address of
the server. If the process can not automatically identify itself it will exit.

3.5 Logging

By default, each process will redirect output to a standard out log and a standard error
log, and create aliases for them. These will be rolled at midnight on a daily basis. They
are all written to the $KDBLOGS directory. The log files created are:

16 ©AquaQ Analytics Limited 2014

3. GETTING STARTED AquaQ TorQ

’ Log File ‘ Description ‘

out_[procname]| [date|.log | Timestamped out log
err_|procname| [date].log | Timestamped error log
out_ [procname].log Alias to current log log
err _[procname].log Alias to current error log

Table 3.3: Log Files

The date suffix can be overridden by modifying the .proc.logtimestamp function
and sourcing torq.q from another script. This could, for example, change the suffixing
to a full timestamp.

3.6 Configuration Loading

The process configuration is contained in q scripts, and stored in the $KDBCONFIG
directory. Each process tries to load all the configuration it can find. Each process will
attempt to load three configuration files in the below order-

e default.q: default configuration loaded by all processes. In a standard instal-
lation this should contain the superset of customisable configuration, including
comments;

e [proctype].q: configuration for a specific process type;
e [procname|.q: configuration for a specific named process.

The only one which should always be present is default.q. Each of the other scripts
can contain a subset of the configuration variables, which will override anything loaded
previously. Configuration is loaded before code.

3.7 Code Loading

Code is loaded from the SKDBCODE directory. There is also a common codebase, a
codebase for each process type, and a code base for each process name, contained in
the following directories and loaded in this order:

e SKDBCODE /common: shared codebase loaded by all processes;
e SKDBCODE/[proctype|: code for a specific process type;
o SKDBCODE/[procname]|: code for a specific process name;

For any directory loaded, the load order can be specified by adding order.txt to the
directory. order.txt dictates the order that files in the directory are loaded. If a file
is not in order.txt, it will still be loaded but after all the files listed in order.txt have
been loaded.

Additional directories can be loaded using the -loaddir command line parameter.

17 ©AquaQ Analytics Limited 2014

3. GETTING STARTED AquaQ TorQ

3.8 Initialization Errors

Initialization errors can be handled in different ways. The default action is any ini-
tialization error causes the process to exit. This is to enable fail-fast type conditions,
where it is better for a process to fail entirely and immediately than to start up in
an indeterminate state. This can be overridden with the -trap or -stop command line
parameters. With -trap, the process will catch the error, log it, and continue. This is
useful if, for example, the error is encountered loading a file of stored procedures which
may not be invoked and can be reloaded later. With -stop the process will halt at the
point of the error but will not exit. Both -stop and -trap are useful for debugging.

18 ©AquaQ Analytics Limited 2014

Chapter 4

Message Handlers

There is a separate code directory containing message handler customizations. This is
found at SKDBCODE /handlers. Much of the code is derived from Simon Garland’s
contributions to code.kxfl

Every external interaction with a process goes through a message handler, and
these can be modified to, for example, log or restrict access. Passing through a bespoke
function defined in a message handler will add extra processing time and therefore
latency to the message. All the customizations we have provided aim to minimise
additional latency, but if a bespoke process is latency sensitive then some or all of the
customizations could be switched off. We would argue though that generally it is better
to switch on all the message handler functions which provide diagnostic information,
as for most non-latency sensitive processes (HDBs, Gateways, some RDBs etc.) the
extra information upon failure is worth the cost. The message handlers can be globally
switched off by setting .proc.loadhandlers to Ob in the configuration file.

"nttp://code.kx.com/wiki/Contrib/UsingDotz

19

http://code.kx.com/wiki/Contrib/UsingDotz
http://code.kx.com/wiki/Contrib/UsingDotz

4. MESSAGE HANDLERS AquaQ TorQ
’ Script ‘ NS ‘ Diag ‘ Function ‘ Modifies

logusage.q .usage Y Log all client interaction to an ascii | pw, po, pg,
log file and/or in-memory table. | ps, pc, ws,
Messages can be logged before and | ph, pp, pi,
after they are processed. Timer calls | exit, timer
are also logged. Exclusion function
list can be applied to .z.ps to disable
logging of asynchronous real time
updates

controlaccess.q | .access N Restrict access for set of users/user | pw, pg, ps,
groups to a list of functions, and | ws, ph, pp,
from a defined set of servers pi

trackclients.q .clients Y Track client process details includ- | po, pg, ps,
ing then number of requests and cu- | ws, pc
mulative data size returned

trackservers.q | .servers Y | Discover and track server processes | pc, timer
including name, type and attribute
information. This also contains the
core of the code which can be used in
conjunction with the discovery ser-
vice.

zpsignore.q .zpsignore N Override async message handler | ps
based on certain message patterns

Table 4.1: Message Handler Scripts

Fach customization can be turned on or off individually from the configuration
file(s). Each script can be extensively customised using the configuration file. Example
customization for logusage.q, taken from $KDBCONFIG /settings/default.q is below.
Please see default.q for the remaining configuration of the other message handler files.

/- Configuration used by the usage functions - logging of client interaction
\d .usage
enabled:1b /— whether the usage logging is enabled

logtodisk:1b
logtomemory:1b
ignore:1lb

ignorelist: (" upd;

flushtime:1D00

/- whether to log to disk or not

/— write query logs to memory

/- check the ignore list for functions to ignore
"upd") /- the list of functions to ignore in async calls

/- default value for how long to persist the

/- in-memory logs. Set to 0D for no flushing

suppressalias:0b /=
logtimestamp:{[].z.d} /=
LEVEL:3 /=
/-
logroll:1b /=
/-

whether to suppress the log file alias creation
function to generate the log file timestamp suffix
log level. O=none;l=errors;2=errors+complete
queries; 3=errorstbefore a querytafter

Whether or not to roll the log file

automatically (on a daily schedule)

20 ©AquaQ Analytics Limited 2014

4. MESSAGE HANDLERS AquaQ TorQ

4.1 logusage.q

logusage.q is probably the most important of the scripts from a diagnostic perspective.
It is a modified version of the logusage.q script on code.kx.

In its most verbose mode it will log information to an in-memory table (.us-
age.usage) and an on-disk ASCII file, both before and after every client interaction
and function executed on the timer. These choices were made because:

e logging to memory enables easy interrogation of client interaction;

e logging to disk allows persistence if the process fails or locks up. ASCII text files
allow interrogation using OS tools such as vi, grep or tail;

e logging before a query ensures any query that adversely effects the process is
definitely captured, as well as capturing some state information before the query
execution;

e logging after a query captures the time taken, result set size and resulting state;

e logging timer calls ensures a full history of what the process is actually doing.
Also, timer call performance degradation over time is a common source of prob-
lems in kdb+ systems.

The following fields are logged in .usage.usage:

Field ‘

Description

time

id

timer
zcmd
status
a

cmd
mem
Sz

error

Time the row was added to the table

ID of the query. Normally before and complete rows will be consecutive but it
might not be the case if the incoming call invokes further external communi-
cation

Execution time. Null for rows with status=b (before)

.z handler the query arrived through

Query status. One of b, ¢ or e (before, complete, error)

Address of sender. .dotz.ipa can be used to convert from the integer format to
a hostname

Username of sender

Handle of sender

Command sent

Memory statistics

Size of result. Null for rows with status of b or e

Error message

Table 4.2: Usage Logging Fields

21 ©AquaQ Analytics Limited 2014

4. MESSAGE HANDLERS AquaQ TorQ

4.2 controlaccess.q

controlaccess.q is used to restrict client access to the process. It is modified version of
controlaccess.q from code.kx. The script allows control of several aspects:

e the host/ip address of the servers which are allowed to access the process;

e definition of three user groups (default, poweruser and superuser) and the actions
each group is allowed to do;

e the group(s) each user is a member of, and any additional actions an individual
user is allowed /disallowed outside of the group permissions;

e the maximum size of the result set returned to a client.

The access restrictions are loaded from csv files. The permissions files are stored in

$KDBCONFIG /permissions.

’ File ‘ Description

* _hosts.csv Contains hostname and ip address (patterns) for servers which are
allowed or disallowed access. If a server is not found in the list, it
is disallowed

__USers.csv Contains individual users and the user groups they are are a mem-
ber of

* functions.csv | Contains individual functions and whether each user group is al-
lowed to execute them. ; separated user list enables functions to
be allowed by individual users

*

Table 4.3: Permissions Files

The permissions files are loaded using a similar hierarchical approach as for the
configuration and code loading. Three files can be provided- default *.csv, [proc-
type] *.csv, and [procname| *.csv. All of the files will be loaded, but permissions
for the same entity (hostpattern, user, or function) defined in [procname| *.csv will
override those in |proctype| *.csv which will in turn override [procname| *.csv.

When a client makes a query which is refused by the permissioning layer, an error
will be raised and logged in .usuage.usage if it is enabled.

4.3 trackclients.q

trackclients.q is used to track client interaction. It is a slightly modified version of
trackclients.q from code.kx, and extends the functionality to handle interaction with
the discovery service.

Whenever a client opens a connection to the q process, it will be registered in the
.clients.clients table. Various details are logged, but from a diagnostic perspective the

22 ©AquaQ Analytics Limited 2014

4. MESSAGE HANDLERS AquaQ TorQ

most important information are the client details, the number of queries it has run, the
last time it ran a query, the number of failed queries and the cumulative size of results
returned to it.

4.4 trackservers.q
trackservers.q is used to register and maintain handles to external servers. It is a heavily
modified version of trackservers.q from code.kx. It is explained more in section

4.5 zpsignore.q

zpsignore.q is used to check incoming async calls for certain patterns and to bypass all
further message handler checks for messages matching the pattern. This is useful for
handling update messages published to a process from a data source.

4.6 Diagnostic Reporting

The message handler modifications provide a wealth of diagnostic information includ-
ing:

e the timings and memory usage for every query run on a process;

e failed queries;

clients trying to do things they are not permissioned for;

the clients which are querying often and/or regularly extracting large datasets;

the number of clients currently connected;

timer calls and how long they take.

Although not currently implemented, it would be straightforward to use this infor-
mation to implement reports on the behaviour of each process and the overall health
of the system. Similarly it would be straightforward to set up periodic publication to
a central repository to have a single point for system diagnostic statistics.

23 ©AquaQ Analytics Limited 2014

Chapter 5

Connection Management

trackservers.q is used to register and maintain handles to external servers. It is a heavily
modified version of trackservers.q from code.kx. All the options are described in the
default config file. All connections are tracked in the .servers. SERVERS table. When
the handle is used the count and last query time are updated.

q) .servers.SERVERS

procname proctype hpup w hits startp
lastp endp
attributes

discoveryl discovery :aquaqg:9996 0 2014.01.08
D11:13:10.583056000 [ORN0!

discovery?2 discovery :aquaqg:9995 6 O 2014.01.07D16:44:47.175757000 2014.01.07
D16:44:47.174408000 [ORN0!

rdb_europe_1 rdb raquaqg: 9998 12 0 2014.01.07D16:46:47.897910000 2014.01.07
D16:46:47.892901000 2014.01.07D16:46:44.626293000 “datacentre country! essex uk

rdbl rdb raquaqg:5011 7 O 2014.01.07D16:44:47.180684000 2014.01.07
D16:44:47.176994000 “datacentre’ country! essex uk

rdb_europe_1 hdb raquaq: 9997 0 2014.01.08
D11:13:10.757801000 OO

hdbl hdb raquag: 9999 0 2014.01.08
D11:13:10.757801000 [ORN0)

hdb2 hdb raquag:5013 8 O 2014.01.07D16:44:47.180684000 2014.01.07
D16:44:47.176994000 ‘datacentre’ country! essex uk

hdbl hdb raquag:5012 9 0 2014.01.07D16:44:47.180684000 2014.01.07
D16:44:47.176994000 ‘datacentre’ country! essex uk

g) last .servers.SERVERS

procname | ~hdb2

proctype | “hdb

hpup | " :aquaqg:5013

w | 81

hits | 0i

startp | 2014.01.08D11:51:01.928045000
lastp | 2014.01.08D11:51:01.925078000
endp | ONp

attributes| “datacentre’ country! essex uk

24

5. CONNECTION MANAGEMENT AquaQ TorQ

5.1 Connections

Processes locate other processes based on their process type. The location is done
either statically using the process.csv file or dynamically using a discovery service. It
is recommended to use the discovery service as it allows the process to be notified as
new processes become available.

The main configuration variable is .servers. CONNECTIONS, which dictates which
process type(s) to create connections to. .servers.startup|| must be called to initialise
the connections. When connections are closed, the connection table is automatically
updated. The process can be set to periodically retry connections.

5.2 Process Attributes

Each process can report a set of attributes. When process A connects to process B,
process A will try to retrieve the attributes of process B. The attributes are defined
by the result of the .proc.getattributes function, which is by default an empty dictio-
nary. Attributes are used to retrieve more detail about the capabilities of each process,
rather than relying on the broad brush process type and process name categorization.
Attributes can be used for intelligent query routing. Potential fields for attributes
include:

e range of data contained in the process;
e available tables;

e instrument universe;

e physical location;

e any other fields of relevance.

5.3 Connection Passwords

The password used by a process to connect to external processes is retrieved using the
.servers.loadpassword function call. By default, this will read the password from a txt
file contained in $KDBCONFIG /passwords. A default password can be used, which is
overridden by one for the process type, which is itself overridden by one for the process
name. For greater security, the .servers.loadpassword function should be modified.

5.4 Retrieving and Using Handles

A function .servers.getservers is supplied to return a table of handle information.
.servers.getservers takes five parameters:

e type-or-name: whether the lookup is to be done by type or name (can be either
proctype or procname);

25 ©AquaQ Analytics Limited 2014

5. CONNECTION MANAGEMENT AquaQ TorQ

e types-or-names: the types or names to retrieve e.g. hdb;

e required-attributes: the dictionary of attributes to match on;

e open-dead-connections: whether to re-open dead connections;

e only-one: whether we only require one handle. So for example if 3 services of the

supplied type are

registered, and we have an open handle to 1 of them, the open

handle will be returned and the others left closed irrespective of the open-dead-
connections parameter.

.servers.getservers will compare the required parameters with the available param-
eters for each handle. The resulting table will have an extra column called attribmatch
which can be used to determine how good a match the service is with the required at-
tributes. attribmatch is a dictionary of (required attribute key) ! (Boolean full match;
intersection of attributes).

g) .servers.SERVERS
procname proctype

discoveryl discovery
:51:01.922390000
discovery?2 discovery
:51:01.922390000
rdb_europe_1 rdb
:51:38.347598000
rdb_europe_2 rdb
:51:38.347598000
rdbl rdb
:51:01.925078000
hdb3 hdb
:51:38.347598000
hdb2 hdb
:51:01.925078000

hpup w hits startp
lastp endp attributes

raquaqg: 9996 0 2014.01.08D11
[(ORN0!

raquag: 9995 6 0 2014.01.08D11:51:01.923812000 2014.01.08D11
[ORNO]

raquaqg: 9998 0 2014.01.08D11
[ORNO)

raquaqg: 9997 0 2014.01.08D11
[ORN0!

raquaqg:5011 7 0 2014.01.08D11:51:01.928045000 2014.01.08D11
“datacentre’ country! essex uk

raquag:5012 9 0 2014.01.08D11:51:38.349472000 2014.01.08D11
‘datacentre’ country! essex uk

raquag:5013 8 0 2014.01.08D11:51:01.928045000 2014.01.08D11

‘datacentre’ country! essex uk

/= pull back hdbs. Leave the attributes empty
q) .servers.getservers|[proctype; " hdb; () ! ();1b; £0b]

procname proctype lastp

hdb3 hdb 2014.
essex uk ()! ()

hdb2 hdb 2014.
essex uk () ! ()

w hpup attributes
attribmatch

01.08D11:51:38.347598000 9 :aquag:5012 “datacentre country!’

01.08D11:51:01.925078000 8 :aquag:5013 “datacentre country!’

/- supply some attributes
g) .servers.getservers|[proctype; hdb; (enlist country) !enlist uk; 1lb; 0b]

procname proctype lastp w hpup attributes
attribmatch
hdb3 hdb 2014.01.08D11:51:38.347598000 9 :aquaq:5012 "datacentre’ country!’
essex uk (, country)!, (1b;, uk)

hdb2 hdb 2014.

01.08D11:51:01.925078000 8 :aquaqg:5013 "datacentre country!’

essex uk (, country)!, (1b;, uk)
qg) .servers.getservers|[proctype; hdb; country datacentre! uk slough;1lb;0b]

procname proctype lastp

w hpup attributes
attribmatch

26 ©AquaQ Analytics Limited 2014

5. CONNECTION MANAGEMENT AquaQ TorQ

hdb3 hdb 2014.01.08D11:51:38.347598000 9 :aquaq:5012 “datacentre’ country!’
essex uk ‘country datacentre! ((1lb;, uk); (0b; symbol$()))

hdb2 hdb 2014.01.08D11:51:01.925078000 8 :aquaq:5013 "datacentre’ country!"
essex uk ‘country datacentre! ((1lb;, uk); (0b; symbol$()))

.servers.getservers will try to automatically re-open connections if required.

g) .servers.getservers|[proctype; rdb; () ! ();1b;0b]
2014.01.08D12:01:06.023146000|aquaglgatewayl|INF|conn|attempting to open handle to
aquaqg: 9998

2014.01.08D12:01:06.023581000|aquag|gatewayl|INF |conn|connection to :aquaqg:9998
failed: hop: Connection refused

2014.01.08D12:01:06.023597000|aquag|gatewayl | INF|conn|attempting to open handle to
aquaq: 9997

2014.01.08D12:01:06.023872000|aquaqg|gatewayl|INF|conn|connection to :aquaqg:9997
failed: hop: Connection refused

procname proctype lastp w hpup attributes
attribmatch
rdbl rdb 2014.01.08D11:51:01.925078000 7 :aquag:5011 “datacentre’ country!’
essex uk ()! ()

/— If we only require one connection, and we have one open,then it doesn't retry

connections
q) .servers.getservers|[proctype; rdb; () ! ();1b; 1b]
procname proctype lastp w hpup attributes
attribmatch
rdbl rdb 2014.01.08D11:51:01.925078000 7 :aquag:5011 “datacentre’ country!’
essex uk ()! ()

There are two other functions supplied for retrieving server details, both of which
are based on .servers.getservers. .servers.gethandlebytype returns a single handle value,
.servers.gethpupbytype returns a single host:port value. Both will re-open connections
if there are not any valid connections. Both take two parameters:

e types: the type to retrieve e.g. hdb;

e selection-algorithm: can be one of any, last or roundrobin.

5.5 Connecting To Non-Tor(Q Processes

Connections to non-torq (external) processes can also be established. This is useful if
you wish to integrate TorQ) with an existing infrastructure. Any process can connect to
external processes, or it can be managed by the discovery service only. Every external
process should have a type and name in the same way as Tor(Q) processes, to enable
them to be located and used as required.

Non-Tor(Q processes need to be listed by default in SKDBCONFIG /settings/non-
torgprocess.csv. This file has the same format as the standard process.csv file. The loca-

tion of the non-TorQ process file can be adjusted using the .servers. NONTORQPROCESSFILE

variable. To enable connections, set .servers. TRACKNONTORQPROCESS to 1b.
Example of nontorqgprocess.csv file:

27 ©AquaQ Analytics Limited 2014

5. CONNECTION MANAGEMENT AquaQ TorQ

host, port,proctype, procname
aquaq, 5533, hdb, extproc01
aquaq, 5577, hdb, extproc02

5.6 Manually Adding And Using Connections

Connections can also be manually added and used. See .api.p".servers.*" for details.

28 ©AquaQ Analytics Limited 2014

Chapter 6
Utilities

We have provided several utility scripts, which either implement developer aids or
standard operations which are useful across processes.

6.1 api.q

This provides a mechanism for documenting and publishing function/variable/table or
view definitions within the kdb+ process. It provides a search facility both by name
and definition (in the case of functions). There is also a function for returning the
approximate memory usage of each variable in the process in descending order.

Definitions are added using the .api.add function. A variable can be marked as
public or private, and given a description, parameter list and return type. The search
functions will return all the values found which match the pattern irrespective of them
having a pre-defined definition.

Whether a value is public or private is defined in the definitions table. If not found
then by default all values are private, except those which live in the .q or top level
namespace.

.api.f is used to find a function, variable, table or view based on a case-insensitive
pattern search. If a symbol parameter is supplied, a wildcard search of *[suppliedvalue|*
is done. If a string is supplied, the value is used as is, meaning other non-wildcard regex
pattern matching can be done.

g) .api.f max

name | vartype namespace public descrip
,,,,,,,,,,,,,,,,,,,, ‘ e
maxs | function .g 1 "

mmax | function .qg 1 nn

.clients.MAXIDLE | variable .clients 0 "

.access.MAXSIZE | variable .access 0 nn .
.cache.maxsize | variable .cache 1 "The maximum size in..
.cache.maxindividual| variable .cache 1 "The maximum size in..
max | primitive 1 nn

q) .api.f"maxx"
name| vartype namespace public descrip params return

maxs| function .g 1 "

29

6. UTILITIES AquaQ TorQ

‘max | primitive 1 " " mn

.api.p is the same as .api.f, but only returns public functions. .api.u is as .api.p, but
only includes user defined values i.e. it excludes q primitives and values found in the
.q, -Q, .h and .o namespaces. .api.find is a more general version of .api.f which can be
used to do case sensitive searches.

.api.s is used to search function definitions for specific values.

g) .api.s"xmaxx"

function definition

Q.w "k) { "used heap peak wmax mmap mphy' syms symw! (.\"..
.clients.cleanup "{if[count wO:exec w from .clients.clients where
.access.validsize "{[x;y;z] $[superuser .z.u;x;MAXSIZE>s:-22!x;x;"'\..
.servers.getservers "{[nameortype; lookups;req;autoopen;onlyonel\n r:$..
.cache.add "{[function;id;status]\n \n res:value function;\n..

.api.m is used to return the approximate memory usage of variables and views in the
process, retrieved using -22!. Views will be re-evaluated if required. Use .api.mem|0b]
if you do not want to evaluate and return views.

q) .api.m[]

variable size sizeMB
o EZoiE 1587359 2
.help.TXT 15409 0
.api.detail 10678 0
.proc.usage 3610 0
.proc.configusage 1029 0

.api.whereami[lambda| can be used to retrieve the name of a function given its defini-
tion. This can be useful in debugging.

g)g: {x+ty}

q)£:{20 + g[x;10]}

q) £[10]

40

q)fl al

{x+y}

'type

+

ta

10

g)) .api.whereami[.z.s]
-9

6.2 async.q

kdb+ processes can communicate with each using either synchronous or asynchronous
calls. Synchronous calls expect a response and so the server must process the request
when it is received to generate the result and return it to the waiting client. Asyn-
chronous calls do not expect a response so allow for greater flexibility. The effect of
synchronous calls can be replicated with asynchronous calls in one of two ways (further

details in section [8.2)):

30 ©AquaQ Analytics Limited 2014

6. UTILITIES

Aqua@Q TorQ

e deferred synchronous: the client sends an async request, then blocks on the handle
waiting for the result. This allows the server more flexibility as to how and when

the query is processed;

e asynchronous postback: the client sends an async request which is wrapped in a
function to be posted back to the client when the result is ready. This allows the
server flexibility as to how and when the query is processed, and allows the client

to continue processing while the server is generating the result.

The code for both of these can get a little tricky, largely due to the amount of error
trapping required. We have provided two functions to allow these methods to be used
more easily. .async.deferred takes a list of handles and a query, and will return a two

item list of (success;results).

g) .async.deferred[3 5; ({system"sleep 1";system"p"}; ())]

1 1

9995 9996

g) .async.deferred[3 5; ({x+y};1;2)]

11

3 3

q) .async.deferred[3 5; ({x+y};1; a)]

0 0

"error: server fail:type" "error: server fail:type"

g) .async.deferred[3 5 87; ({system"sleep 1";system"p"}; ())]
1 1 0

99951 99961 "error: comm fail: failed to send query"

.async.postback takes a list of handles, a query, and the name or lambda of the
postback function to return the result to. It will immediately return a success vector,

and the results will be posted back to the client when ready.

g) .async.postback[3 5; ({system"sleep 1";system"p"}; ()); showresult]
11b

q)

g) 99951

99961

g) .async.postback[3 5; ({x+y};1;2); showresult]
11b

q)3

3

q) .async.postback[3 5; ({x+y};1; a); showresult]
11b

g) "error: server fail:type"

"error: server fail:type"

g) .async.postback[3 5; ({x+y};1l; a);showresult]
11b

q) "error: server fail:type"

"error: server fail:type"

q) .async.postback[3 5 87; ({x+y};1;2);showresult]
110b

q)3

3

For more details, see .api.p".async.*".

31 ©AquaQ Analytics Limited 2014

6. UTILITIES AquaQ TorQ

6.3 timer.q

kdb+ provides a single timer function, .z.ts which is triggered with the frequency spec-
ified by -t. We have provided an extension to allow multiple functions to be added
to the timer and fired when required. The basic concept is that timer functions are
registered in a table, with .z.ts periodically checking the table and running whichever
functions are required. This is not a suitable mechanism where very high frequency
timers are required (e.g. sub 500ms).

There are two ways a function can be added to a timer- either as a repeating timer,
or to fire at a specific time. When a repeating timer is specified, there are three options
as to how the timer can be rescheduled. Assuming that a timer function with period P
is scheduled to fire at time TO, actually fires at time T1 and finishes at time T2, then

e mode 0 will reschedule for TO+P;
e mode 1 will reschedule for T1-+P;

e mode 2 will reschedule for T2+P.

Both mode 0 and mode 1 have the potential for causing the timer to back up if the
finish time T2 is after the next schedule time. See .api.p".timer.*"for more details.

6.4 pubsub.q

pubsub.q is essentially a placeholder script to allow publish and subscribe functionality
to be implemented. Licenced kdb-tick users can use the publish and subscribe func-
tionality implemented in u.[k|q|. If u.[k|q] is placed in the common code directory and
loaded before pubsub.q (make sure u.[k|q| is listed before pubsub.q in order.txt) then
publish and subscribe will be implemented. You can also build out this file to add your
own publish and subscribe routines as required.

6.5 heartbeat.q

heartbeat.q implements heartbeating, and relies on both timer.q and pubsub.q. A table
called heartbeat will be published periodically, allowing downstream processes to detect
the availability of upstream components. The heartbeat table contains a heartbeat time
and counter. The heartbeat script contains functions to handle and process heartbeats
and manage upstream process failures. See .api.p“.hb.*"for details.

6.6 cache.q

cache.q provides a mechanism for storing function results in a cache and returning them
from the cache if they are available and non stale. This can greatly boost performance
for frequently run queries.

32 ©AquaQ Analytics Limited 2014

6. UTILITIES AquaQ TorQ

The result set cache resides in memory and as such takes up space. It is up to the
programmer to determine which functions are suitable for caching. Likely candidates
are those where some or all of the following conditions hold:

e the function is run multiple times with the same parameters (perhaps different
clients all want the same result set);

e the result set changes infrequently or the clients can accept slightly out-of-date
values;

e the result set is not too large and/or is relatively expensive to produce. For
example, it does not make sense to cache raw data extracts.

The cache has a maximum size and a minimum size for any individual result set, both
of which are defined in the configuration file. Size checks are done with -22! which will
give an approximation (but underestimate) of the result set size. In the worst case the
estimate could be half the size of the actual size.

If a new result set is to be cached, the size is checked. Assuming it does not exceed
the maximum individual size then it is placed in the cache. If the new cache size would
exceed the maximum allowed space, other result sets are evicted from the cache. The
current eviction policy is to remove the least recently accessed result sets until the
required space is freed. The cache performance is tracked in a table. Cache adds, hits,
fails, reruns and evictions are monitored.

The main function to use the cache is .cache.execute[function; staletime|. If the
function has been executed within the last staletime, then the result is returned from
the cache. Otherwise the function is executed and placed in the cache.

The function is run and the result placed in the cache:

q) \t r:.cache.execute] ({system"sleep 2"; x+y};1;2);0D00:01]
2023

q)r
3

The second time round, the result set is returned immediately from the cache as we
are within the staletime value:

q) \t rl:.cache.execute[({system"sleep 2"; x+y};1;2);0D00:01]
0

q)rl
3

If the time since the last execution is greater than the required stale time, the function
is re-run, the cached result is updated, and the result returned:

g) \t r2:.cache.execute[({system"sleep 2"; x+y};1;2);0D00:00]
2008

q) r2

3

The cache performance is tracked:

33 ©AquaQ Analytics Limited 2014

6. UTILITIES AquaQ TorQ

g) .cache.getperf[]

time id status function
2013.11.06D12:41:53.103508000 2 add {system"sleep 2"; x+y} 1 2
2013.11.06D12:42:01.647731000 2 hit {system"sleep 2"; x+y} 1 2

2013.11.06D12:42:53.930404000 2 rerun ({system"sleep 2"; x+y} 1 2

See .api.p“.cache.*”for more details.

6.7 timezone.q

A slightly customised version of the timezone conversion functionality from code.kx{ﬂ
It loads a table of timezone information from $SKDBCONFIG. See .api.p*.tz.* for more
details.

6.8 compress.q

compress.q applies compression to any kdb+ database, handles all partition types in-
cluding date, month, year, int, and can deal with top level splayed tables. It will
also decompress files as required. Once the compression/decompression is complete,
summary statistics are returned, with detailed statistics for each compressed or decom-
pressed file held in a table.

The utility is driven by the configuration specified within a csv file. Default pa-
rameters can be given, and these can be used to compress all files within the database.
However, the compress.q utility also provides the flexibility to compress different ta-
bles with different compression parameters, and different columns within tables using
different parameters. A function is provided which will return a table showing each file
in the database to be compressed, and how, before the compression is performed.

Compression is performed using the -19! operator, which takes 3 parameters; the
compression algorithm to use (0 - none, 1 - kdb-+ IPC, 2 - gzip), the compression block-
size as a power of 2 (between 12 and 19), and the level of compression to apply (from
0 - 9, applicable only for gzip). (For further information on -19! and the parameters
used, see code.kx.comf})

The compressionconfig.csv file should have the following format:

table, minage, column, calgo, cblocksize, clevel
default, 20,default,2,17,6

trades, 20,default,1,17,0
quotes, 20, asize, 2,17,7

quotes, 20,bsize,2,17,7

This file can be placed in the config folder, or a path to the file given at run time.
The compression utility compresses all tables and columns present in the HDB but
not specified in the driver file according the default parameters. In effect, to compress
an entire HDB using the same compression parameters, a single row with name default

1http://code.kx.com/wiki/Cookbook/Timezones
2code . kx.com/wiki/Cookbook/FileCompression

34 ©AquaQ Analytics Limited 2014

http://code.kx.com/wiki/Cookbook/Timezones
code.kx.com/wiki/Cookbook/FileCompression

6. UTILITIES AquaQ TorQ

would suffice. To specify that a particular table should be compressed in a certain
different manner, it should be listed in the table. If default is given as the column
for this table, then all of the columns of that table will be compressed accordingly.
To specify the compression parameters for particular columns, these should be listed
individually. For example, the file above will compress trades tables 20 days old or
more with an algorithm of 1, and a blocksize of 17. The asize and bsize columns of any
quotes tables older than 20 days old will be compressed using algorithm 2, blocksize 17
and level 7. All other files present will be compressed according to the default, using
an algorithm 2, blocksize 17 and compression level 6. To leave files uncompressed,
you must specify them explicitly in the table with a calgo of 0. If the file is already
compressed, note that an algorithm of 0 will decompress the file.

This utility should be used with caution. Before running the compression it is
recommended to run the function .cmp.showcomp, which takes three parameters - the
path to the database, the path to the csv file, and the maximum age of the files to be
compressed:

.cmp.showcomp [:/full/path/to/HDB; .cmp.inputcsv;maxage]
/- for using the csv file in the config folder
.cmp.showcomp [:/full/path/to/HDB; :/full/path/to/csvfile;maxage]
/- to specify a file

This function produces a table of the files to be compressed, the parameters with
which they will be compressed, and the current size of the file. Note that the current
size column is calculated using hcount; on a file which is already compressed this returns
the uncompressed length, i.e. this cannot be used as a signal as to whether the file is
compressed already.

fullpath column table partition age calgo cblocksize clevel
compressage currentsize

:/home/hdb/2013.11.05/depth/asizel asizel depth 2013.11.05 146 0 17 8
1 787960

:/home/hdb/2013.11.05/depth/asize2 asize2 depth 2013.11.05 146 0 17 8
1 787960

:/home/hdb/2013.11.05/depth/asize3 asize3 depth 2013.11.05 146 0 17 8
1 787960

:/home/hdb/2013.11.05/depth/askl askl depth 2013.11.05 146 0 17 8
1 1575904

To then run the compression function, use .cmp.compressmaxage with the same
parameters as .cmp.showcomp (hdb path, csv path, maximum age of files):

.cmp.compressmaxage [:/full/path/to/HDB; .cmp.inputcsv;maxage]
/- for using the csv file in the config folder
.cmp.compressmaxage [:/full/path/to/HDB; " :/full/path/to/csvfile;maxage]
/- to specify a file

To run compression on all files in the database disregarding the maximum age of
the files (i.e. from minage as specified in the configuration file to infinitely old), then
use:

‘.cmp.docompression[‘:/full/path/to/HDB;.cmp.inputcsv]

35 ©AquaQ Analytics Limited 2014

6. UTILITIES AquaQ TorQ

/- for using the csv file in the config folder
.cmp.docompression[’ :/full/path/to/HDB; " :/full/path/to/csvfile]
/- to specify a file

Logs are produced for each file which is compressed or decompressed. Once the
utility is complete, the statistics of the compression are also logged. This includes
the memory savings in MB from compression, the additional memory usage in MB for
decompression, the total compression ratio, and the total decompression ratio:

|compl | INF |compression|Memory savings from compression: 34.48MB. Total compression
ratio: 2.51.

| compl | INF | compression|Additional memory used from de-compression: 0.00MB. Total de-
compression ratio:

| compl | INF | compression|Check .cmp.statstab for info on each file.

A table with the compressed and decompressed length for each individual file,
in descending order of compression ratio, is also produced. This can be found in
.cmp.statstab:

file algo compressedLength uncompressedLength compressionratio

:/hdb/2014.03.05/depth/asizel 2 89057 772600 8.675343
:/hdb/2014.01.06/depth/asizel 2 114930 995532 8.662073
:/hdb/2014.03.05/depth/bsizel 2 89210 772600 8.660464
:/hdb/2014.03.12/depth/bsizel 2 84416 730928 8.658643
:/hdb/2014.01.06/depth/bsizel 2 115067 995532 8.651759

A note for windows users - windows supports compression only with a compression
blocksize of 16 or more.

6.9 help.q

The standard help.q from code.kx provides help utilities in the console. This should be
kept up to date with code.kxﬂ.

q) help®

adverb | adverbs/operators
attributes| data attributes

cmdline | command line parameters

data | data types

define | assign, define, control and debug
dotz | .z locale contents

errors | error messages

save | save/load tables

syscmd | system commands

temporal | temporal - date & time casts
verbs | verbs/functions

3http://code.kx.com/wsvn/code/kx/kdb+/d/help.q

36 ©AquaQ Analytics Limited 2014

http://code.kx.com/wsvn/code/kx/kdb+/d/help.q
http://code.kx.com/wsvn/code/kx/kdb+/d/help.q

6. UTILITIES AquaQ TorQ

6.10 html.q

An HTML utility has been added to accompany the HTML5 front end for the Mon-
itoring process. It includes functions to format dates, tables to csv to configure the
HTML file to work on the correct process. It is accessible from the .html namespace.

6.11 Additional Utilities

There are some additional user contributed utility scripts available on code.kx which
are good candidates for inclusion. These could either be dropped into the common
code directory, or if not globally applicable then in the code directory for either the
process type or name.

This is not an exhaustive list. The full set of user contributed code is documented
hereﬂ Some examples with general or common applicability include:

’ Functionality ‘ Location ‘ Description

Debugger http://code.kx.com/ A command line debugger for
wiki/Contrib/debugQ q, with optional web interface

Compression http://code.kx.com/ Utilities for = compressing
wsvn/code/contrib/ databases and retrieving
simon/compress compression statistics

Statistical Func- | http://althenia.net/ A set of useful mathematical

tions (QML) agml functions from the FDLIBM,

Cephes, LAPACK and CON-
MAX libraries

CSV Loading http://code.kx.com/ Utilities for reading in CSV
wsvn/code/contrib/ files

simon/csvguess/

Table 6.1: Additional Utility Scripts

6.12 Full API

The full public api can be found by running

q) .api.u’

name | vartype namespace public descrip

————————————————— | s=—————————e—e e e e es s essssss
.proc.createlog | function .proc 1 "Create the standard out..
.proc.rolllogauto| function .proc 1 "Roll the standard out/e..
.proc.loadf | function .proc 1 "Load the specified file..
.proc.loaddir | function .proc 1 "Load all the .q and .k ..
.1g.0 | function .lg 1 "Log to standard out"

“http://code.kx.com/wiki/Contrib

37 ©AquaQ Analytics Limited 2014

http://code.kx.com/wiki/Contrib
http://code.kx.com/wiki/Contrib/debugQ
http://code.kx.com/wiki/Contrib/debugQ
http://code.kx.com/wsvn/code/contrib/simon/compress
http://code.kx.com/wsvn/code/contrib/simon/compress
http://code.kx.com/wsvn/code/contrib/simon/compress
http://althenia.net/qml
http://althenia.net/qml
http://code.kx.com/wsvn/code/contrib/simon/csvguess/
http://code.kx.com/wsvn/code/contrib/simon/csvguess/
http://code.kx.com/wsvn/code/contrib/simon/csvguess/
http://code.kx.com/wiki/Contrib

6. UTILITIES AquaQ TorQ

Combined with the commented configuration file, this should give a good overview
of the functionality available. A description of the individual namespaces is below- run
.api.u “namespace®’to list the functions.

Namespace ‘ Description ‘

.proc Process API

g Standard out/error logging API
.erT Error throwing API

.usage Usage logging API

.access Permissions API

.clients Client tracking API
.Servers Server tracking API

.async Async communication API
timer Timer API

.cache Caching API

1z Timezone conversions API
.cmp Compression API

.ps Publish and Subscribe API
.hb Heartbeating API

.api API management API

Table 6.2: Full API

38 ©AquaQ Analytics Limited 2014

Chapter 7

Visualisation

kdb+ supports websockets and so HTML5 GUIs can be built. We have incorporated a
set of server side and client side utilities to ease HI'ML GUI development.

7.1 kdb+ Utilities

The server side utilities are contained in html.q. These utilise some community code,
specifically json.k and a modified version of u.q, both from Kx Systems. The supplied
functionality includes:

e json.k provides two way conversion between kdb+ data structures and JSON;

e u.q is the standard pub/sub functionality provided with kdb-+tick, and a modified
version is incorporated to publish data structures which can be easily interpreted
in JavaScript;

e functions for reformatting temporal types to be JSON compliant;

e page serving to utilise the inbuilt kdb+ webserver to serve custom web pages. An
example would be instead of having to serve a page with a hardcoded websocket
connection host and port, the kdb+ process can serve a page connecting back to
itself no matter which host or port it is running on.

7.2 JavaScript Utilities
The JavaScript utilities are contained in kdbconnect.js. The library allows you to:

e create a connection to the kdb-+ process;
e display the socket status;
e sending queries;

e binding results returned from kdb-+ to updates in the webpage.

39

7. VISUALISATION AquaQ TorQ

7.3 Outline

All communication between websockets and kdb+ is asynchronous. The approach we
have adopted is to ensure that all data sent to the web browser is encoded as a JSON
object containing a tag to enable the web page to decipher what the data relates to.
The format we have chosen is for kdb+ to send dictionaries of the form:

“name data! ("dataID";dataObject)

All the packing can be done by .html.dataformat. Please note that the temporal
types are converted to longs which can easily be converted to JavaScript Date types.
This formatting can be modified in the formating dictionary .html.typemap.

g)a:flip "minute’ time date month' timestamp timespan datetime’ float sym!enlist each
(09:00; 09:00:00.0;.z.d; "month$.z.d; .z.p; .z.n;.z.z;20f; a)

g) .html.dataformat ["start"; (enlist " tradegraph) !enlist a]

name| "start"

datal (, tradegraph)!,+ minute time date month timestamp timespan datetime’ float sym
'(,32400000;,32400000;,1396828800000;,1396310400000;,"2014-04-07T13:23:012
";,48181023;,"2014-04-07T13:23:01z";,20f;, " a)

g) first (.html.dataformat["start"”; (enlist "~tradegraph) !enlist a]) [data; tradegraph]
minute | 32400000

time | 32400000

date | 1396828800000

month | 1396310400000

timestamp| "2014-04-07T13:23:01z"

timespan | 48181023

datetime | "2014-04-07T13:23:01z"

float | 20f

sym | a

We have also extended this structure to allow web pages to receive data in a way
similar to the standard kdb+tick pub/sub format. In this case, the data object looks
like:

“name data! ("upd"; tablename tabledata! (‘trade; ([1time:09:00 09:05 09:10; price:12 13
14)))

This can be packed with .html.updformat:

g) .html.updformat ["upd"; tablename’ tabledata! (" trade;a)]

name| "upd"

datal "tablename tabledata! (‘trade;+ minute time date month timestamp timespan’
datetime” float sym
!(,32400000;,32400000;,1396828800000;,1396310400000;,"2014-04-07T13:23:01Z
";,48181023;,"2014-04-07T13:23:01z";,20f;, "a))

g) first (.html.updformat ["upd"; tablename tabledata! (trade;a)]) [data; tabledata]
minute | 32400000

time | 32400000

date | 1396828800000

month | 1396310400000

timestamp| "2014-04-07T13:23:01z"
timespan | 48181023

datetime | "2014-04-07T13:23:01z"
float | 20f
sym | Ta

To utilise the pub/sub functionality, the web page must connect to the kdb+ process
and subscribe for updates. Subscriptions are done using

40 ©AquaQ Analytics Limited 2014

7. VISUALISATION AquaQ TorQ

.html.wssub[tablename]

Publications from the kdb-+ side are done with

.html.pub[tablename;tabledatal

On the JavaScript side the incoming messages (data events) must be bound to page
updates. For example, there might be an initialisation event called "start" which allows
the web page to retrieve all the initial data from the process. The code below redraws
the areas of the page with the received data.

/* Bind data - Data type "start" will execute the callback function =*/
KDBCONNECT .bind ("data", "start", function (data) {
// Check that data is not empty
if (data.hbtable.length !== 0)
// Write HTML table to div element with id heartbeat-table
{ $("#heartbeat-table") .html (MONITOR. jsonTable (data.hbtable)); }
if (data.lmtable.length !== 0)
// Write HTML table to div element with id logmsg-table
{ $("#logmsg-table") .html (MONITOR. jsonTable (data.lmtable));}
if (data.lmchart.length !== 0)
// Log message error chart
{ MONITOR.barChart (data.lmchart, "logmsg-chart", "Error Count", "myTab"); }
1)

Similarly the upd messages must be bound to page updates. In this case, the
structure is slightly different:

KDBCONNECT .bind ("data", "upd", function (data) {
if (data.tabledata.length===0) return;
if (data.tablename === "heartbeat")
{ $("#heartbeat-table") .html (MONITOR. jsonTable (data.tabledata));}
if (data.tablename === "logmsg")
{ $("#logmsg-table") .html (MONITOR. jsonTable (data.tabledata));}
if (data.tablename === "lmchart")
{ MONITOR.barChart (data.tabledata, "logmsg-chart", "Exrror Count", "myTab"); }
1)

To display the WebSocket connection status the event "ws_event" must be bound
and it will output one of these default messages: "Connecting...", "Connected" and
"Disconnected" depending on the connection state of the WebSocket. Alternatively
the value of the readyState attribute will determine the WebSocket status.

// Select html element using jQuery
var $statusMsg = $("#status-msg");
KDBCONNECT .bind ("ws_event", function (data) {
// Data is the default message string
$statusMsg.html (data) ;
1)
KDBCONNECT.core.websocket .readyState // Returns 1 if connected.

Errors can be displayed by binding the event called "error".

KDBCONNECT .bind ("error", function (data) {
$statusMsg.html ("Error - " + data);
b i

41 ©AquaQ Analytics Limited 2014

7. VISUALISATION AquaQ TorQ

7.4 Example

A basic example is provided with the Monitor process. To get this to work, u.q from
kdb-+tick should be placed in the code/common directory to allow all processes to
publish updates. It should be noted that this is not intended as a production monitoring
visualisation screen, moreso a demonstration of functionality. See section [8.6.1]for more
details.

7.5 Further Work

Further work planned includes:
e allow subscriptions on a key basis- currently all subscribers receive all updates;

e add JavaScript controls to allow in-place updates based on key pairs, and scrolling
window updates e.g. add N new rows to top/bottom of the specified table;

e allow multiple websocket connections to be maintained at the same time.

42 ©AquaQ Analytics Limited 2014

Chapter 8

Processes

A set of processes is included. These processes build upon AquaQ TorQ, providing
specific functionality. All the process scripts are contained in SKDBCODE /processes.
All processes should have an entry in $SKDBCONFIG /process.csv. All processes can
have any type and name, except for discovery services which must have a process type
of "discovery". An example process.csv is:

aquag$ cat config/process.csv

host, port,proctype, procname

aquaq, 9998, rdb, rdb_europe_1

aquaq, 9997, hdb, rdb_europe_laquaqg, 9999, hdb, hdbl
aquaq, 9996, discovery,discoveryl
aquaqg, 9995, discovery,discovery2
aquaq, 8000, gateway, gatewayl

aquaq, 5010, tickerplant,tickerplantl
aquaq, 5011, rdb, rdbl
aquaq, 5012, hdb, hdbl
aquaq, 5013, hdb, hdb2

aquaq, 9990, tickerlogreplay, tpreplayl
aquaq, 20000,kill, killhdbs

aquaq, 20001, monitor, monitorl

aquaqg, 20002, housekeeping, hkl

8.1 Discovery Service

8.1.1 Overview

Processes use the discovery service to register their own availability, find other processes
(by process type) and subscribe to receive updates for new process availability (by
process type). The discovery service does not manage connections- it simply returns
tables of registered processes, irrespective of their are current availability. It is up to
each individual process to manage its own connections.

The discovery service uses the process.csv file to make connections to processes on
start up. After start up it is up to each individual process to attempt connections
and register with the discovery service. This is done automatically, depending on the
configuration parameters. Multiple discovery services can be run in which case each

43

8. PROCESSES AquaQ TorQ

process will try to register and retrieve process details from each discovery process it
finds in its process.csv file. Discovery services do not replicate between themselves. A
discovery process must have its process type listed as discovery.

To run the discovery service, use a start line such as:

aquag $ g torg.q -load code/processes/discovery.q -p 9995

Modify the configuration as required.

8.1.2 Operation

1. Processes register with the discovery service.

1. Register
Discovery | Avalabilty | Historic

Service Database 1

-~

1. Register
Availability

Load
Balancing
Gateway

2. Processes use the discovery service to locate other processes.

Historic
Database 1

Discovery

Service

s

1. Request 2. Send
HDB HDB
Services Details

A

r

3. Create
Connection

Load
Balancing
Gateway

44 ©AquaQ Analytics Limited 2014

8. PROCESSES

Aqua@Q TorQ

3. When new services register, any processes which have registered an interest in

that process type are notified.

Notification

2. New
HDB

8.1.3 Awvailable Processes

Discovery
Service

Load
Balancing
Gateway

1

. Register
Availability

3. Create
Connection

Historic

Database 1

Historic
Database 2

The list of available processes can be found in the .servers. SERVERS table.

g) .servers.SERVERS

procname proctype hpup w hits startp
lastp endp attributes

discoveryl discovery raquaqg: 9995 0
2014.01.22D17:00:40.947470000 [ORN0!

discovery?2 discovery raquaqg: 9996 0
2014.01.22D17:00:40.947517000 [ORN0!

hdb2 hdb raquaq:5013 0
2014.01.22D17:00:40.947602000 [ORN0!

killtick kill raquaq:20000 0
2014.01.22D17:00:40.947602000 [ORN0!

tpreplayl tickerlogreplay :aquaqg:20002 0
2014.01.22D17:00:40.947602000 [ORN0!

tickerplantl tickerplant raquag:5010 6 O 2014.01.22D17:00:40.967699000
2014.01.22D17:00:40.967698000 (ORN0O!

monitorl monitor raquaq:20001 9 O 2014.01.22D17:00:40.971344000
2014.01.22D17:00:40.971344000 [ORN0!

rdbl rdb raquag:5011 7 O 2014.01.22D17:06:13.032883000
2014.01.22D17:06:13.032883000 ‘date tables! (,2014.01.22; fxquotes heartbeat’
logmsg quotes trades)

hdb3 hdb raquaqg:5012 8 0 2014.01.22D17:06:18.647349000
2014.01.22D17:06:18.647349000 ‘date tables! (2014.01.13 2014.01.14; fxquotes"
heartbeat logmsg quotes' trades)

gatewayl gateway raquaq:5020 10 O 2014.01.22D17:06:32.152836000
2014.01.22D17:06:32.152836000 [ORN0!

45 ©AquaQ Analytics Limited 2014

8. PROCESSES AquaQ TorQ

8.2 Gateway

A synchronous and asynchronous gateway is provided. The gateway can be used for
load balancing and/or to join the results of queries across heterogeneous servers (e.g.
an RDB and HDB). Ideally the gateway should only be used with asynchronous calls.
Synchronous calls cause the gateway to block so limits the gateway to serving one query
at a time (although if querying across multiple backend servers the backend queries will
be run in parallel). When using asynchronous calls the client can either block and wait
for the result (deferred synchronous) or post a call back function which the gateway
will call back to the client with. With both asynchronous and synchronous queries the
backend servers to execute queries against are selected using process type. The gateway
API can be seen by querying .api.p".gw.*" within a gateway process.

Deferred
Synchronous " As_ynchronous
Synchronous with Callback
Data Data Data l
Service Service Service
2. Async @ 3. Async 2. Async : 3. Async 2. Async 3. Async
Queryto ! Response Query to = : Response Queryto : Response
Service - . from Service Service - . from Service Service - . from Service
- ' - ' - '
Gateway Gateway Gateway
A : A * 4 Asvnc R
1. Sync 4. Sync 1. Async : © 4. Async 1. Async : ; 4. Async Response
Query Response Query - Response Que};y . wrapp&igig:nback
Client Client Client
Code: [i(])(de:) Code:
res:h(query); neglhjlquery);
res:n(::) neg[hl(query)
Processing continues while
messages are in flight

8.2.1 Asynchronous Behaviour

Asynchronous queries allow much greater flexibility. They allow multiple queries to be
serviced at once, prioritisation, and queries to be timed out. When an asynchronous
query is received the following happens:

46 ©AquaQ Analytics Limited 2014

8. PROCESSES AquaQ TorQ

e the query is placed in a queue;
e the list of available servers is retrieved;
e the queue is prioritised, so those queries with higher priority are serviced first;

e queries are sent to back end servers as they become available. Once the backend
server returns its result, it is given another query;

e when all the partial results from the query are returned the results are aggregated
and returned to the client. They are either returned directly, or wrapped in a
callback and posted back asynchronously to the client.

The two main customisable features of the gateway are the selection of available
servers (.gw.availableservers) and the queue prioritisation (.gw.getnextqueryid). With
default configuration, the available servers are those servers which are not currently
servicing a query from the gateway, and the queue priority is a simple FIFO queue. The
available servers could be extended to handle process attributes, such as the available
datasets or the location of the process, and the queue prioritisation could be modified
to anything required e.g. based on the query itself, the username, host of the client etc.

An asynchronous query can be timed out using a timeout defined by the client. The
gateway will periodically check if any client queries have not completed in the alotted
time, and return a timeout error to the client. If the query is already running on any
backend servers then they cannot be timed out other than by using the standard -T
flag.

8.2.2 Synchronous Behaviour

When using synchronous queries the gateway can only handle one query at a time and
cannot timeout queries other than with the standard -T flag. All synchronous queries
will be immediately dispatched to the back end processes. They will be dispatched
using an asyhcnronous call, allowing them to run in parallel rather than serially. When
the results are received they are aggregated and returned to the client.

8.2.3 Process Discovery

The gateway uses the discovery service to locate processes to query across. The dis-
covery service will notify the gateway when new processes become available and the
gateway will automatically connect and start using them. The gateway can also use
the static information in process.csv, but this limits the gateway to a predefined list of
processes rather than allowing new services to come online as demand requires.

8.2.4 Error Handling

When synchronous calls are used, q errors are returned to clients as they are encoun-
tered. When using asynchronous calls there is no way to return actual errors and
appropriately prefixed strings must be used instead. It is up to the client to check the

47 ©AquaQ Analytics Limited 2014

8. PROCESSES AquaQ TorQ

type of the received result and if it is a string then whether it contains the error prefix.
The error prefix can be changed, but the default is "error: ". Errors will be returned
when:

e the client requests a query against a server type which the gateway does not
currently have any active instances of (this error is returned immediately);

e the query is timed out;

e a back end server returns an error;

e a back end server fails;

e the join function fails.

If postback functions are used, the error string will be posted back within the
postback function (i.e. it will be packed the same way as a valid result).

8.2.5 Client Calls

There are four main client calls. The .gw.sync* methods should only be invoked syn-
chronously, and the .gw.async* methods should only be invoked asynchronously. Each
of these are documented more extensively in the gateway api. Use .api.p".gw.*" for
more details.

Function

Description

.gw.syncexec|query;
servertypes|

.gw.syncexecj[query;
servertypes; joinfunc-
tion]
.gw.asyncexec[query;
servertypes|

.gw.asyncexecjpt|query;
servertypes; joinfunc-
tion; postback; timeout|

Execute the specified query synchronously against the re-
quired list of servers. If more than one server, the results
will be razed.

Execute the specified query against the required list of
servers. Use the specified join function to aggregate the re-
sults.

Execute the specified query against the required list of
servers. If more than one server, the results will be razed.
The client must block and wait for the results.

Execute the specified query against the required list of
servers. Use the specified join function to aggregate the re-
sults. If the postback function is not set, the client must
block and wait for the results. If it is set, the result will
be wrapped in the specified postback function and returned
asynchronously to the client. The query will be timed out if
the timeout value is exceeded.

Table 8.1: Gateway API

For the purposes of demonstration, assume that the queries must be run across
an RDB and HDB process, and the gateway has one RDB and two HDB processes

available to it.

48 ©AquaQ Analytics Limited 2014

8. PROCESSES AquaQ TorQ

d) .gw.servers
handle| servertype inuse active querycount lastquery usage
attributes

______ ‘ e

7 | rdb 0 1 17 2014.01.07D17:05:03.113927000 0DOO
:00:52.149069000 "“datacentre country! essex uk

8 | hdb 0 1 17 2014.01.07D17:05:03.113927000 0DOO
:01:26.143564000 “datacentre’ country! essex’ uk

9 | hdb 0 1 2 2014.01.07D16:47:33.615538000 0DOO
:00:08.019862000 “datacentre country! essex uk

12 | rdb 0 1 2 2014.01.07D16:47:33.615538000 0DOO
:00:04.018349000 “datacentre country! essex uk

Both the RDB and HDB processes have a function f and table t defined. f will run
for 2 seconds longer on the HDB processes then it will the RDB.

q) £

{system"sleep ",string x+$[hdb=.proc.proctype;2;0]; t}
qt

a

5013

5014

5015

5016

5017

Run the gateway. The main parameter which should be set is the .servers. CONNECTIONS
parameter, which dictates the process types the gateway queries across. Also, we need
to explicitly allow sync calls. We can do this from the config or from the command
line.

g torg.q -load code/processes/gateway.q -p 8000 -.gw.synccallsallowed 1 -.servers.
CONNECTIONS hdb rdb

Start a client and connect to the gateway. Start with a sync query. The HDB query
should take 4 seconds and the RDB query should take 2 seconds. If the queries run in
parallel, the total query time should be 4 seconds.

g) h:hopen 8000

a)h (" .gw.syncexec; (" £;2); hdb rdb)
a

5014

5015

5016

5017

5018

5012

5013

5014

5015

5016

g)\t h(.gw.syncexec; (" f£;2); hdb rdb)
4009

If a query is done for a server type which is not registered, an error is returned:

49 ©AquaQ Analytics Limited 2014

8. PROCESSES AquaQ TorQ

g)\t h(.gw.syncexec; ('f;2); hdb rdb other)
'not all of the requested server types are available; missing other

Custom join functions can be specified:

g)h (" .gw.syncexec]; (' £;2); hdb rdb; {sum{select count i by a from x} each x})
a | x
—_— I —
5014 2
5015| 2
5016 2
5017] 1
5018 1
5012 1
5013 1

Custom joins can fail with appropriate errors:

g)h (" .gw.syncexeci; (' £;2); hdb rdb; {sum{select count i by b from x} each x})
'failed to apply supplied join function to results: b

Asynchronous queries must be sent in async and blocked:

g) (neg h) (" .gw.asyncexec; (" £;2); hdb rdb); r:h(::)
/— This white space is from pressing return
/— the client is blocked and unresponsive

We can send multiple async queries at once. Given the gateway has two RDBs and
two HDBs avaialble to it, it should be possible to service two of these queries at the
same time.

g)h:hopen each 8000 8000

g) \t (neg h)@\: (" .gw.asyncexec; (' f;2); hdb rdb); (neg h)@\:(::); r:h@\: (::)
4012

q)r

+(, a)!,5014 5015 5016 5017 5018 5012 5013 5014 5015 5016

+(, a)!,5013 5014 5015 5016 5017 9999 10000 10001 10002 10003

Alternatively async queries can specify a postback so the client does not have to
block and wait for the result. The postback function must take two parameters- the
first is the function that was sent up, the second is the results. The postback can either
be a lambda, or the name of a function.

50 ©AquaQ Analytics Limited 2014

8. PROCESSES AquaQ TorQ

g)h:hopen 8000

g) handleresults: {-1(string .z.z)," got results"; -3!x; show y}

g) (neg h) (" .gw.asyncexecjpt; (" £;2); hdb rdb; raze;handleresults; 0Wn)
q)

q) /- These g prompts are from pressing enter

a) /— The g client is not blocked, unlike the previous example
q)

q)2014.01.07T16:53:42.481 got results

a

5014

5015

5016

5017

5018

5012

5013

5014

5015

5016

/- Can also use a named function rather than a lambda
(neg h) (" .gw.asyncexecijpt; (" £;2); hdb rdb;raze; handleresults; 0Wn)

q)
Q)
q)
q)2014.01.07T16:55:12.235 got results
a

5014
5015
5016
5017
5018
5012
5013
5014
5015
5016

Asynchronous queries can also be timed out. This query will run for 22 seconds,
but should be timed out after 5 seconds. There is a tolerance of 45 seconds on the
timeout value, as that is how often the query list is checked. This can be reduced as
required.

g) (neg h) (" .gw.asyncexecjpt; (" £;20); hdb rdb;raze; ();0D00:00:05); r:h(::)
a)a)a)r

"error: query has exceeded specified timeout value"

q) \t (neg h) (* .gw.asyncexecjpt; (' £;20); "hdb rdb;raze; ();0D00:00:05); r:h(::)
6550

8.2.6 Non kdb-+ Clients

All the examples in the previous section are from clients written in q. However it should
be possible to do most of the above from non kdb+ clients. The officially supported

51 ©AquaQ Analytics Limited 2014

8. PROCESSES AquaQ TorQ

APIs for Java, C# and C allow the asynchronous methods above. For example, we can
modify the try block in the main function of the Java Grid Viewerﬂ

import java.awt.BorderLayout;
import java.awt.Color;

import java.io.IOException;
import java.lang.reflect.Array;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.swing.JFrame;
import javax.swing.JScrollPane;
import javax.swing.JTable;
import javax.swing.table.AbstractTableModel;
import kx.c;

public class Main {
public static class KxTableModel extends AbstractTableModel {
private c.Flip flip;
public void setFlip(c.Flip data) {
this.flip = data;

public int getRowCount () {
return Array.getLength(flip.y[0]);

public int getColumnCount () {
return flip.y.length;
}

public Object getValueAt (int rowIndex, int columnIndex) {
return c.at (flip.y[columnIndex], rowIndex);

}

public String getColumnName (int columnIndex) {
return flip.x[columnIndex];

}i

public static void main(String[] args) {

KxTableModel model = new KxTableModel () ;

c ¢ = null;

try {
c = new c("localhost", 8000, "username:password") ;
// Create the query to send
String query=".gw.asyncexec[(" £;2); hdb rdb]";
// Send the query
c.ks (query) ;
// Block on the socket and wait for the result
model.setFlip ((c.Flip) c.k());

} catch (Exception ex) {

Logger.getLogger (Main.class.getName ()) .log(Level.SEVERE, null, ex);
} finally {
if (c != null) {try{c.close();} catch (IOException ex) {}

}

JTable table = new JTable (model) ;

table.setGridColor (Color.BLACK) ;

String title = "kdb+ Example - "+model.getRowCount ()+" Rows";
JFrame frame = new JFrame (title);

"nttp://code.kx.com/wiki/Cookbook/InterfacingWithJava

52 ©AquaQ Analytics Limited 2014

http://code.kx.com/wiki/Cookbook/InterfacingWithJava
http://code.kx.com/wiki/Cookbook/InterfacingWithJava

8. PROCESSES AquaQ TorQ

frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE) ;
frame.getContentPane () .add (new JScrollPane (table), BorderLayout.CENTER) ;
frame.setSize (300, 300);

frame.setVisible (true) ;

Some of the unofficially supported APIs may only allow synchronous calls to be
made.

8.3 Tickerplant Log Replay
The Tickerplant Log Replay script is for replaying tickerplant logs. This is useful for:

1. handling end of day save down failures;

2. handling large volumes of data (larger than can fit into RAM).

The process takes as the main input either an individual log file to replay, or a
directory containing a set of log files. Amongst other functionality, the process can:

e replay specific message ranges;

e replay in manageable message chunks;

e ignore specific tables;

e modify the tables before or after they are saved;

e apply sorting and parting after all the data is written out.

The process must have some variables set (the tickerplant log file or directory, the
schema file, and the on-disk database directory to write to) or it will fail on startup.
These can either be set in the config file, or overridden from the command line in the
usual way. An example start line would be:

g torg.q -debug -load code/processes/tickerlogreplay.q —-p 9990 -.replay.tplogfile ../
test/tplogs/marketdata2013.12.17 -.replay.schemafile ../test/marketdata.g —.
replay.hdbdir ../test/hdbl

The tickerplant log replay script has extended usage information which can be
accessed with -.replay.usage.

g torg.qg —-debug -load code/processes/tickerlogreplay.q -p 9990 -.replay.usage

53 ©AquaQ Analytics Limited 2014

8. PROCESSES AquaQ TorQ

8.4 Housekeeping

The housekeeping process is used to undertake periodic system housekeeping and main-
tenance, such as compressing or removing files which are no longer required. The pro-
cess will run the housekeeping jobs periodically on a timer. Amongst other functionality
the process:

e Allows for removing and zipping of directory files;

e Provides an inbuilt search utility and selectively searches using a ‘find” and ‘ex-
clude’ string, and an ‘older than’ parameter;

e Reads all tasks from a single CSV;
e Runs on a user defined timer;
e Can be run immediately from command line or within the process;

e Can be easily extended to include new user defined housekeeping tasks.

The process has two main parameters that should be set prior to use; runtimes
and inputcsv.‘Runtimes’ sets the timer to run housekeeping at the set time(s), and
‘Inputcsv’ provides the location of the housekeeping csv file. These can either be set in
the config file, or overridden via the command line. If these are not set, then default
parameters are used; 12.00 and ‘KDBCONFIG /housekeeping.csv’ respectively. The
process is designed to run from a single csv file with five headings:

e Function details the action that you wish to be carried out on the files, initially,
this can be rm (remove) and zip (zipping);

e Path specifies the directory that the files are in;

e Match provides the search string to the find function, files returned will have
names that match this string;

e Exclude provides a second string to the find function, and these files are excluded
from the match list;

e Age is the ‘older than’ parameter, and the function will only be carried out on
files older than the age given (in days).

An example csv file would be:

function,path,match, exclude, age
zip, ./logs/, ».log, xtickx, 2

rm, ./logs/, *.logx, xtickx, 4

zip, ./logs/, xtickx,,1

rm, ./logs/, *tickx,, 3

function path match exclude age
zip "./logs/" "x.log" "xtickx" 2
rm "./logs/" "x.logx" "xtickx" 4
le "./lOgS/" Tetickx" "W 1
rm "./logs/"™ "xtickx" "" 3

54 ©AquaQ Analytics Limited 2014

8. PROCESSES AquaQ TorQ

The process reads in the csv file, and passes it line by line to a ‘find’ function;
providing a dictionary of values that can be used to locate the files required. The find
function takes advantage of system commands to search for the files according to the
specifications in the dictionary. A search is performed for both the match string and the
exclude string, and cross referenced to produce a list of files that match the parameters
given. The files are then each passed to a further set of system commands to perform
the task of either zipping or removing. Note that an incomplete csv or non-existant
path will throw an error.

The remove and zipping functions form only basic implimentations of the housekeep-
ing process; it is designed to be exended to include more actions than those provided.
Any user function defined in the housekeeping code can be employed in the same fashion
by providing the name of the function,search string and age of files to the csv.

As well as being scheduled on a timer, the process can also be run immediately.
Adding ‘-hk.runnow 1’ to the command line when starting the process will force imme-
diate running of the actions in the housekeeping csv. Likewise, setting runnow to 1b in
the config file will immediately run the cleaning process. Both methods will cause the
process to exit upon completion. Calling hkrun|| from within the q process will also
run the csv instructions immediately. This will not affect any timer scheduling and the
process will remain open upon completion.

Housekeeping works both on windows and unix based systems. Since the process
utilizes inbuilt system commands to perform maintenances, a unix/windows switch
detects the operating system of the host and applies either unix or widows functions
appropriately. Extensions need only be made in the namespace of the hosting operating
system (i.e. if you are using a unix system, and wish to add a new function, you do
not need to add the function to the windows namespace to). Usage information can be
accessed using the ‘-hkusage’ flag:

g torg.q -load code/processes/housekeeping.q —-p 9999 -proctype housekeeping —procname
hkl -debug —-hkusage

8.5 File Alerter

The file alerter process is a long-running process which periodically scans a set of
directories for user-specified files. If a matching file is found it will then carry out a
user-defined function on it. The files to search for and the functions to run are read in
from a csv file. Additionally, the file alerter process can:

e run more than one function on the specified file.
e optionally move the file to a new directory after running the function.
e store a table of files that have already been processed.

e run the function only on new files or run it every time the file is modified.

55 ©AquaQ Analytics Limited 2014

8. PROCESSES AquaQ TorQ

e ignore any matching files already on the system when the process starts and only
run a function if a new file is added or a file is modified.

The file alerter process has four parameters which should be set prior to use. These
parameters can either be set in the config file or overridden on the command-line. If
they are not set, the default parameters will be used. The parameters are as follows.

inputcsv - The name and location of the csv file which defines the behaviour of the
process. The default is /KDBCONFIG /filealerter.csv.

polltime - How often the process will scan for matching files. The default is 0D:00:01,
i.e., every minute.

alreadyprocessed - The name and location of the already-processed table. The de-
fault is /KDBCONFIG /filealerterprocessed. This table will be created automatically
the first time the process is ran.

skipallonstart - If this is set to 1, it will ignore all files already on the system; if it is
set to 0, it will not. The default value is 0.

The files to find and the functions to run are read in from a csv file created by the
user. This file has five columns, which are detailed below.

path - This is the path to the directory that will be scanned for the file.

match - This is a search string matching the name of the file to be found. Wildcards
can be used in this search, for example, “file*” will find all files starting with “fil”.

function - This is the name of the function to be run on the file. This function must be
defined in the script KDBCODE /processes/filealerter.q. If the function is not defined
or fails to run, the process will throw an error and ignore that file from then on.

newonly - This is a boolean value. If it is set to 1, it will only run the function on
the file if it has been newly created. If it is set to 0, then it will run the function every
time the file is modified.

movetodirectory - This is the path of the directory you would like to move the file
to after it has been processed. If this value is left blank, the file will not be moved.

It is possible to run two separate functions on the same file by adding them as
separate lines in the csv file. If the file is to be moved after it is processed, the file
alerter will run both functions on the file and then attempt to move it. A typical csv
file to configure the file alerter would look like:

‘ path,match, function, newonly, movetodirectory

56 ©AquaQ Analytics Limited 2014

8. PROCESSES AquaQ TorQ

/path/to/dirA, fileA.x,copy, 0, /path/to/newDir
/path/to/dirB, fileB.txt,email, 1,
/path/to/dirA, fileA.x,delete, 0, /path/to/newDir

path match function newonly movetodirectory
"/path/to/dirA" "fileA.«" copy 0 "/path/to/newDir"
"/path/to/dirB" "fileB.txt" email 1 mn
"/path/to/dirA" "fileA.«" delete 0 "/path/to/newDir"

The file alerter process reads in each line of the csv file and searches files matching the
search string specified in that line. Note that there may be more than one file found if
a wildcard is used in the search string. If it finds any files, it will check that they are
not in the already processed table. If newonly is set to 1, it only checks if the filename
is already in the table. If newonly is set to 0, it checks against the filename, filesize
and a md5 hash of the file. The md5 hash and the filesize are used to determine if
the file has been modified since it was processed last. If the found files have not been
processed already, it then attempts to run the specified function to these files.

After the process has run through each line of the csv, it generates a table of all
files that were processed on that run. These files are appended to the already processed
table which is then saved to disk. The file alerter will attempt to move the files to the
‘movetodirectory’, if specified. If the file has already been moved during the process
(for example, if the function to run on it was ‘delete’), the file alerter will not attempt
to move it.

The file alerter is designed to be extended by the user. Customised functions should
be defined within the filealerter.q script. They should be diadic functions, i.e., they
take two parameters: the path and the filename. As an example, a simple function to
make a copy of a file in another directory could be:

copy:{[path;file] system "cp ", path,"/", file, " /path/to/newDir"}

Although the process is designed to run at regular intervals throughout the day, it
can be called manually by invoking the FArun[] command from within the q session.
Similarly, if new lines are added to the csv file, then it can be re-loaded by calling the
loadcsv[] command from the q session.

Each stage of the process, along with any errors which may occur, are appropriately
logged in the usual manner.

The file alerter process is designed to work on both Windows and Unix based
systems. Since many of the functions defined will use inbuilt system command they
will be need to written to suit the operating system in use. It should also be noted
that Windows does not have an inbuilt md5 hashing function so the file alerter will
only detect different versions of files if the filename or filesize changes.

8.6 Monitor

The Monitor process is a simple process to monitor the health of the other processes
in the system. It connects to each process that it finds (by default using the discovery

57 ©AquaQ Analytics Limited 2014

8. PROCESSES AquaQ TorQ

service, though can use the static file as well) and subscribes to both heartbeats and
log messages. It maintains a keyed table of heartbeats, and a table of all log messages
received.

Run it with:

aquag $ g torqg.q -load code/processes/monitor.q -p 20001

It is probably advisable to run the monitor process with the -trap flag, as there may
be some start up errors if the processes it is connecting to do not have the necessary
heartbeating or publish/subscribe code loaded.

aquaq $ g torqg.q -load code/processes/monitor.qg -p 20001 -trap

The current heartbeat statuses are tracked in .hb.hb, and the log messages in logmsg

g) show .hb.hb

sym procname | time counter warning error
______________________ ‘ ———
discovery discovery2 | 2014.01.07D13:24:31.848257000 893 0 0
hdb hdbl | 2014.01.07D13:24:31.866459000 955 0 0
rdb rdb_europe_1| 2014.01.07D13:23:31.507203000 901 1 0
rdb rdbl | 2014.01.07D13:24:31.848259000 34 0 0

g) show select from logmsg where loglevel="ERR

time sym host loglevel id message
2014.01.07D12:25:17.457535000 hdbl aquag ERR reload "failed to reload database"
2014.01.07D13:29:28.784333000 rdbl aquag ERR eodsave "failed to save tables :

trade, quote"

8.6.1 HTML5 front end

A HTMLS5 front end has been built to display important process information that is
sent from the monitor process. It uses HITML5, WebSockets and JavaScript on the
front end and interacts with the monitor process in the kdb+ side. The features of the
front end include:

e Heartbeat table with processes that have warnings highlighted in orange and
errors in red

e Log message table displaying the last 30 errors
e Log message error chart that is by default displayed in 5 minute bins
e Chart’s bin value can be changed on the fly

e Responsive design so works on all main devices i.e. phones, tablets and desktop

It is accessible by going to the url http://HOST:PORT/.non?monitorui
A screenshot of the front end can be seen in fig 8.1}

58 ©AquaQ Analytics Limited 2014

8. PROCESSES AquaQ TorQ

Figure 8.1: Screenshot of HTML5 front end.

Process Monitor AQL]AQ_

Analytlcs
Status: Connected
Heartbeat
sym prochame time counter warning error
hdb hdb3 2014-04-07T710:51:002 19 false false
discovery discovery1 2014-04-07710:51:03Z 19 false false
rdb rdbi 2014-04-07T10:51:18Z 5 false false

Table Chart

Log Messages

time sym host loglevel id message
2014-04-07T10:50:05Z rdb1 homer ERR TEST Final Error
2014-04-07T10:49:57Z rdb1 homer ERR TEST Another example of an error
2014-04-07T10:49:47Z rdb1 homer ERR TEST Another example of an error
2014-04-07T10:48:57Z rdb1 homer ERR TEST Another example of an error
2014-04-07T10:48:51Z rdb1 homer ERR TEST Another example of an error
2014-04-07T10:48:43Z rdbt homer ERR TEST Another example of an error
2014-04-07T10:48:35Z rdb1 homer ERR TEST Example of an error

Built by Glen Smith - AquaQ Analylics - Copyright Reserved @

8.7 Kill

The kill process is used to connect to and terminate currently running processes. It
kills the process by sending the exit command therefore the kill process must have ap-
propriate permissions to send the command, and it must be able to create a connection
(i.e. it will not be able to kill a blocked process in the same way that the unix command
kill -9 would). By default, the kill process will connect to the discovery service(s), and
kill the processes of the specified types. The kill process can be modified to not use
the discovery service and instead use the process.csv file via the configuration in the
standard way.

If run without any command line parameters, kill.q will try to kill each process it
finds with type defined by its .servers. CONNECTIONS variable.

g torg.q -load code/processes/kill.q —-p 20000

servers. CONNECTIONS can optionally be overridden from the command line (as can
any other process variable):

g torg.q -load code/processes/kill.qg -p 20000 -.servers.CONNECTIONS rdb tickerplant

59 ©AquaQ Analytics Limited 2014

8. PROCESSES AquaQ TorQ

The kill process can also be used to kill only specific named processes within the process
types:

g torg.q -load code/processes/kill.qg -p 20000 -killnames hdbl hdb2

60 ©AquaQ Analytics Limited 2014

Chapter 9

Integration with kdb--tick

AquaQ TorQ can be fully integrated with kdb-+tick. It can be used to extend and
enhance the functionality of kdb+tick, but for the purposes of demonstration we will
use un-modified kdb-+tick (2.7) scripts. We will use as a basis the example start lines
from the bottom of tick.q. Kdb+tick can be downloaded from http://code.kx.
com/wsvn/code/kx/kdb+tickl

>q tick.g sym . -p 5010 /tick
>q tick/r.q :5010 -p 5011 /rdb
>q sym -p 5012 /hdb

There are some pre-built scripts provided for kdb-tick. kdb-tick should be un-
zipped and placed in the root directory i.e. in the same location as torq.q. The root
directory should contain torq.q, tickerplant.q, tick.q and the tick directory. u.q should
also be copied to the the common code directory to enable all processes to implement
publish and subscribe.

All the process start lines in this section are applicable to unix based systems. For
Windows systems the redirection lines should be modified.

9.1 process.csv

To start, we need to add each of the above processes to the process.csv file, giving them
an appropriate type and name.

aquag$ cat config/process.csv

host, port, proctype, procname

aquaq, 5010, tickerplant, tickerplantl
aquaq, 5011, rdb, rdbl
aquaq, 5012, hdb, hdbl
aquaq, 5013, hdb, hdb2
aquaq, 5020, gateway, gwl

aquaq, 9995, discovery,discoveryl
aquaq, 9996, discovery,discovery2
aquaq,20000,kill,killtick

61

http://code.kx.com/wsvn/code/kx/kdb+tick
http://code.kx.com/wsvn/code/kx/kdb+tick

9. INTEGRATION WITH KDB-}TICK AquaQ TorQ

9.2 Tickerplant

The tickerplant is a latency sensitive application. As such we should be very careful
with message handlers. It does not do any harm to load extra code into the tickerplant
as long as it not invoked, but for the sake of the example we will only load the minimum
code required. We actually do not want Aqua() TorQ to do too much modification-
really we just want it for log file redirection, and to register client connections.

We can do all this in two steps. The first is create a wrapper script to load the
tickerplant followed by torq.q. torq.q must be loaded second, as otherwise the .z.pc
definition is modified by tick.q.

aquag$ cat tickerplant.g
\1l tick.qg
\1l torqg.q

The second is to create some bespoke config for processes of type tickerplant. We
do this by adding $KDBCONFIG /settings/tickerplant.q, and overriding some of the
variables defined in $KDBCONFIG /settings/default.q. Specifically, we do not want
to load any extra code, and the only message handlers we want to load are the client
tracking ones, and only invoke them when connections are opened or closed. If required,
it would be feasible to also add access controls but only check them when a connection
is opened.

aquag$ cat ../config/tickerplant.q
/- tickerplant configuration

/— Process initialisation

\d .proc

loadcommoncode: Ob /- do not load common code

loadprocesscode: 0b /- do not load process code

loadnamecode: 0b /- do not load name code

loadhandlers:1b /- load the message handles (but switch most off)
logroll:0b /- do not roll logs

/- Configuration used by the usage functions - logging of client interaction

\d .usage

enabled:0b /- switch off the usage logging

/- Client tracking configuration

/- This is the only thing we want to do

/- and only for connections being opened and closed
\d .clients

enabled:1b /— whether client tracking is enabled
opencloseonly:1b /- only log open and closing of connections
INTRUSIVE: Ob /- do not interrogate clients

AUTOCLEAN: 1b /— clean out old records when handling a close
RETAIN: long$0D02 /- length of time to retain client information
MAXIDLE: long$O0D /- no closing of idle connections

/- Access controls
\d .access
enabled:0b /— disable access controls

/- Server connection details

\d .servers
enabled:0b /- disable server tracking

62 ©AquaQ Analytics Limited 2014

9. INTEGRATION WITH KDB-}TICK AquaQ TorQ

\d .timer

enabled:0b /— disable the timer

\d .hb

enabled:0b /— disable heartbeating

\d .zpsignore
enabled:0b /- disable zpsignore - .z.ps should be empty

The standard tickerplant set up requires a schema file to be placed in the tick directory:

aquag$ cat tick/equity.qg
trade: ([Jtime: timestamp$ ();sym: g# symbol$ ();price: float$())

Run the tickerplant. The parameters are the same parameters to the tick.q- the
schema file and the log directory.

aquag$q tickerplant.q equity hdb -p 5010 </dev/null >$KDBLOG/torgtp.txt 2>&1 &

The initial log messages are written to SKDBLOG /torqtp.txt. Once torq.q is ini-
tialised, appropriate log files and aliases are created.

aquag$ls —-1lrt $KDBLOG/xtickerplantx

-rw-r—--r—— 1 aquaqg staff 126 6 Nov 14:46 /torghome/logs/err_tickerplantl_2013
.11.06.10g

lrwxr-xr-x 1 aquaq staff 31 6 Nov 15:29 /torghome/logs/out_tickerplantl.log ->
out_tickerplantl_2013.11.06.1log

lrwxr-xr-x 1 aquaq staff 31 6 Nov 15:29 /torghome/logs/err_tickerplantl.log ->
err_tickerplantl_2013.11.06.1log

-rw-r——-r—— 1 aquaqg staff 14831 6 Nov 15:29 /torghome/logs/out_tickerplantl 2013
.11.06.10g

9.3 RDB

For the purposes of this example, we are going to assume that the RDB is not as latency
sensitive and as such we should be able to use the whole framework, with default values.
The RDB still requires command line parameters in a specific order, but fortunately
we can load it directly, as long as we put the tickerplant port and hdb port parameters
in the correct place. If the RDB is latency senstive, the configuration can be modified
in a similar way to the tickerplant.

To run an RDB within AquaQ TorQ:

aquag$ g torg.q :5010 :5012 -load tick/r.g -p 5011 </dev/null >S$KDBLOG/torgrdb.txt
2>&1 &

All the log files and aliases should have been created including usage logs:

aquag$ ls —-lrt /torghome/logs/*rdbx*

lrwxr-xr-x 1 aquaq staff 25 6 Nov 15:52 /torghome/logs/usage_rdbl.log —>
usage_rdbl_2013.11.06.1log

lrwxr-xr-x 1 aquaq staff 23 6 Nov 15:52 /torghome/logs/out_rdbl.log —>
out_rdbl_ 2013.11.06.1log

-rw-r—--r-— 1 aquag staff 1453 6 Nov 15:52 /torghome/logs/torgrdb.txt

-rw-r—-r-- 1 aquag staff 0 6 Nov 15:52 /torghome/logs/err_rdbl_2013.11.06.log

lrwxr-xr-x 1 aquaq staff 23 6 Nov 15:52 /torghome/logs/err_rdbl.log —>
err_rdbl_2013.11.06.1log

63 ©AquaQ Analytics Limited 2014

9. INTEGRATION WITH KDB-}TICK AquaQ TorQ

-rw-r—--r—-— 1 aquaqg staff 130 6 Nov 15:52 /torghome/logs/usage_rdbl_2013.11.06.
log
-rw-r—--r—-— 1 aquaq staff 7954 6 Nov 15:52 /torghome/logs/out_rdbl_2013.11.06.1log

The HDB is exactly the same as the RDB. It can be invoked directly from torq.q and
we can use the full framework. However, we do not need to specify any parameters,
just the HDB directory.

aquag$qg torg.q —-load hdb/equity -p 5012 </dev/null >$KDBLOG/torghdb.txt 2>&1 &

9.5 Discovery Service

A discovery service can be run to allow other processes to locate the tickerplant(s),
rdb(s) and hdb(s). Remember to add the discovery service to process.csv.

g torg.g —-load code/processes/discovery.q —-p 9995 </dev/null >$KDBLOG/torgdiscovery.
txt 2>&1 &

9.6 Gateway

A gateway can be added. In this example we are adding a gateway to query across
the HDB and RDB. Multiple gateways with different characteristics can be added as
required.

g torg.q -load code/processes/gateway.q -p 5020 -.servers.CONNECTIONS hdb rdb </dev/
null >$KDBLOG/torggw.txt 2>&1 &

9.7 Kill the System

The system can be killed using the kill process, assuming the discovery service is running
e.g.

g torg.q -load code/processes/kill.g —-p 20000 -.servers.CONNECTIONS rdb tickerplant
hdb </dev/null >$KDBLOG/torgkill.txt 2>&l1 &

9.8 Debugging

To debug any of the processes in the foreground, simply drop the redirection lines and
add the debug flag e.g.

aquag$q torg.q —-load hdb/equity -p 5012 -debug

64 ©AquaQ Analytics Limited 2014

9. INTEGRATION WITH KDB-}TICK AquaQ TorQ

9.9 Quick Start

A launch script is provided with the installation which does most of the operations
listed above. The instructions in the README must be followed to get it to work. On
unix based systems use launchtick.sh, on Windows use launchtick.bat.

9.10 Tick Modifications

Some modifications are advisable to ensure smooth running of the system:

e If using heartbeating and/or log message publication, the RDB end-of-day func-
tion should be modified to ensure the heartbeat and logmsg table are not saved
down at end-of-day. If they are saved, then the heartbeating and log publishing
functionality of the HDB may fail to work as the HDB will regard these tables
as splayed and will not be able to publish them using the standard pub/sub
functionality. A function, .rdb.moveandclear, is provided to aid this. It should
be invoked prior to the end-of-day job to move these two tables to a different
namespace, and then move them back when complete;

e The RDB can be modified to reload multiple HDBs (i.e. multiple HDB processes
accessing the same data) at day end. The RDB can use the discovery service to
find all the registered HDB processes, and reload them all.

65 ©AquaQ Analytics Limited 2014

Chapter 10

What Can We Do For You?

AquaQ are a leading provider of kdb+ support, training and consultancy. Our staff
have many years of experience architecting and implementing kdb-+ systems. We would
be happy to engage with you either implementing and customizing AquaQ TorQ, or
in bespoke development and support of incumbent systems. Areas that we can assist
include:

Schema Design: deciding the best schema to capture, store and analyse your
data;

Real Time Data Processing: process and act on live data as fast as possible;

Gateway Design: transparent access across heterogenous data sources e.g. real-
time databases and historic database. Load balancing across homogeneous re-
sources;

Resilience: no single points of failure. Disaster recovery strategies;

Massive Data Management: strategies to minimise the system memory footprint
whilst maintaining access to the data;

System Stabilisation: ensuring system stability, resolving system bottlenecks.

Quantitative Analysis: helping you get the most from your data.

Our experience to date is predominantly in the Capital Markets industry. However,
our expertise in system architecture and data analysis techniques will extend across
domains into other sectors. Please contact us to talk to one of our experts.

10.1 Feedback

Please submit suggestions, improvements and bug reports to

info@aquaq.co.uk

66

	Company Overview
	Overview
	What is kdb+?
	What is AquaQ TorQ?
	Do I Really Have to Read This Whole Document?
	Operating System and kdb+ Version
	License

	Getting Started
	File Structure
	Using torq.q
	Environment Variables
	Process Identification
	Logging
	Configuration Loading
	Code Loading
	Initialization Errors

	Message Handlers
	logusage.q
	controlaccess.q
	trackclients.q
	trackservers.q
	zpsignore.q
	Diagnostic Reporting

	Connection Management
	Connections
	Process Attributes
	Connection Passwords
	Retrieving and Using Handles
	Connecting To Non-TorQ Processes
	Manually Adding And Using Connections

	Utilities
	api.q
	async.q
	timer.q
	pubsub.q
	heartbeat.q
	cache.q
	timezone.q
	compress.q
	help.q
	html.q
	Additional Utilities
	Full API

	Visualisation
	kdb+ Utilities
	JavaScript Utilities
	Outline
	Example
	Further Work

	Processes
	Discovery Service
	Overview
	Operation
	Available Processes

	Gateway
	Asynchronous Behaviour
	Synchronous Behaviour
	Process Discovery
	Error Handling
	Client Calls
	Non kdb+ Clients

	Tickerplant Log Replay
	Housekeeping
	File Alerter
	Monitor
	HTML5 front end

	Kill

	Integration with kdb+tick
	process.csv
	Tickerplant
	RDB
	HDB
	Discovery Service
	Gateway
	Kill the System
	Debugging
	Quick Start
	Tick Modifications

	What Can We Do For You?
	Feedback

